• Stars
    star
    633
  • Rank 68,307 (Top 2 %)
  • Language
    Python
  • License
    Other
  • Created about 6 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for the paper "DeepType: Multilingual Entity Linking by Neural Type System Evolution"

Status: Archive (code is provided as-is, no updates expected)

DeepType: Multilingual Entity Linking through Neural Type System Evolution

This repository contains code necessary for designing, evolving type systems, and training neural type systems. To read more about this technique and our results see this blog post or read the paper.

Authors: Jonathan Raiman & Olivier Raiman

Our latest approach to learning symbolic structures from data allows us to discover a set of task specific constraints on a neural network in the form of a type system, to guide its understanding of documents, and obtain state of the art accuracy at recognizing entities in natural language. Recognizing entities in documents can be quite challenging since there are often millions of possible answers. However, when using a type system to constrain the options to only those that semantically "type check," we shrink the answer set and make the problem dramatically easier to solve. Our new results suggest that learning types is a very strong signal for understanding natural language: if types were given to us by an oracle, we find that it is possible to obtain accuracies of 98.6-99% on two benchmark tasks CoNLL (YAGO) and the TAC KBP 2010 challenge.

Data collection

Get wikiarticle -> wikidata mapping (all languages) + Get anchor tags, redirections, category links, statistics (per language). To store all wikidata ids, their key properties (instance of, part of, etc..), and a mapping from all wikipedia article names to a wikidata id do as follows, along with wikipedia anchor tags and links, in three languages: English (en), French (fr), and Spanish (es):

export DATA_DIR=data/
./extraction/full_preprocess.sh ${DATA_DIR} en fr es

Create a type system manually and check oracle accuracy:

To build a graph projection using a set of rules inside type_classifier.py (or any Python file containing a classify method), and a set of nodes that should not be traversed in blacklist.json:

export LANGUAGE=fr
export DATA_DIR=data/
python3 extraction/project_graph.py ${DATA_DIR}wikidata/ extraction/classifiers/type_classifier.py

To save a graph projection as a numpy array along with a list of classes to a directory stored in CLASSIFICATION_DIR:

export LANGUAGE=fr
export DATA_DIR=data/
export CLASSIFICATION_DIR=data/type_classification
python3 extraction/project_graph.py ${DATA_DIR}wikidata/ extraction/classifiers/type_classifier.py  --export_classification ${CLASSIFICATION_DIR}

To use the saved graph projection on wikipedia data to test out how discriminative this classification is (Oracle performance) (edit the config file to make changes to the classification used):

export DATA_DIR=data/
python3 extraction/evaluate_type_system.py extraction/configs/en_disambiguator_config_export_small.json --relative_to ${DATA_DIR}

Obtain learnability scores for types

export DATA_DIR=data/
python3 extraction/produce_wikidata_tsv.py extraction/configs/en_disambiguator_config_export_small.json --relative_to ${DATA_DIR} sample_data.tsv
python3 learning/evaluate_learnability.py sample_data.tsv --out report.json --wikidata ${DATA_DIR}wikidata/

See learning/LearnabilityStudy.ipynb for a visual analysis of the AUC scores.

Evolve a type system

python3 extraction/evolve_type_system.py extraction/configs/en_disambiguator_config_export_small.json --relative_to ${DATA_DIR}  --method cem  --penalty 0.00007

Method can be cem, greedy, beam, or ga, and penalty is the soft constraint on the size of the type system (lambda in the paper).

Convert a type system solution into a trainable type classifier

The output of evolve_type_system.py is a set of types (root + relation) that can be used to build a type system. To create a config file that can be used to train an LSTM use the jupyter notebook extraction/TypeSystemToNeuralTypeSystem.ipynb.

Train a type classifier using a type system

For each language create a training file:

export LANGUAGE=en
python3 extraction/produce_wikidata_tsv.py extraction/configs/${LANGUAGE}_disambiguator_config_export.json /Volumes/Samsung_T3/tahiti/2017-12/${LANGUAGE}_train.tsv  --relative_to /Volumes/Samsung_T3/tahiti/2017-12/

Then create an H5 file from each language containing the mapping from tokens to their entity ids in Wikidata:

export LANGUAGE=en
python3 extraction/produce_windowed_h5_tsv.py  /Volumes/Samsung_T3/tahiti/2017-12/${LANGUAGE}_train.tsv /Volumes/Samsung_T3/tahiti/2017-12/${LANGUAGE}_train.h5 /Volumes/Samsung_T3/tahiti/2017-12/${LANGUAGE}_dev.h5 --window_size 10  --validation_start 1000000 --total_size 200500000

Create a training config with all languages, my_config.json. Paths to the datasets is relative to config file (e.g. you can place it in the same directory as the dataset h5 files): [Note: set wikidata_path to where you extracted wikidata information, and classification_path to where you exported the classifications with project_graph.py]. See learning/configs for a pre written config covering English, French, Spanish, German, and Portuguese.

{
    "datasets": [
        {
            "type": "train",
            "path": "en_train.h5",
            "x": 0,
            "ignore": "other",
            "y": [
                {
                    "column": 1,
                    "objective": "type",
                    "classification": "type_classification"
                },...
            ],
            "ignore": "other",
            "comment": "#//#"
        },
        {
            "type": "dev",
            "path": "en_dev.h5",
            "x": 0,
            "ignore": "other",
            "y": [
                {
                    "column": 1,
                    "objective": "type",
                    "classification": "type_classification"
                },...
            ],
            "ignore": "other",
            "comment": "#//#"
        }, ...
    ],
    "features": [
        {
            "type": "word",
            "dimension": 200,
            "max_vocab": 1000000
        },...
    ],
    "objectives": [
        {
            "name": "type",
            "type": "softmax",
            "vocab": "type_classes.txt"
        }, ...
    ],
    "wikidata_path": "wikidata",
    "classification_path": "classifications"
}

Launch training on a single gpu:

CUDA_VISIBLE_DEVICES=0 python3 learning/train_type.py my_config.json --cudnn --fused --hidden_sizes 200 200 --batch_size 256 --max_epochs 10000  --name TypeClassifier --weight_noise 1e-6  --save_dir my_great_model  --anneal_rate 0.9999

Several key parameters:

  • name: main scope for model variables, avoids name clashing when multiple classifiers are loaded
  • batch_size: how many examples are used for training simultaneously, can cause out of memory issues
  • max_epochs: length of training before auto-stopping. In practice this number should be larger than needed.
  • fused: glue all output layers into one, and do a single matrix multiply (recommended).
  • hidden_sizes: how many stacks of LSTMs are used, and their sizes (here 2, each with 200 dimensions).
  • cudnn: use faster CuDNN kernels for training
  • anneal_rate: shrink the learning rate by this amount every 33000 training steps
  • weight_noise: sprinkle Gaussian noise with this standard deviation on the weights of the LSTM (regularizer, recommended).

To test that training works:

You can test that training works as expected using the dummy training set containing a Part of Speech CRF objective and cat vs dogs log likelihood objective is contained under learning/test:

python3 learning/train_type.py learning/test/config.json

Installation

Mac OSX

pip3 install -r requirements.txt
pip3 install wikidata_linker_utils_src/

Fedora 25

sudo dnf install redhat-rpm-config
sudo dnf install gcc-c++
sudo pip3 install marisa-trie==0.7.2
sudo pip3 install -r requirements.txt
pip3 install wikidata_linker_utils_src/

More Repositories

1

whisper

Robust Speech Recognition via Large-Scale Weak Supervision
Python
57,624
star
2

openai-cookbook

Examples and guides for using the OpenAI API
MDX
55,428
star
3

gym

A toolkit for developing and comparing reinforcement learning algorithms.
Python
33,715
star
4

CLIP

CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image
Jupyter Notebook
21,231
star
5

gpt-2

Code for the paper "Language Models are Unsupervised Multitask Learners"
Python
20,844
star
6

chatgpt-retrieval-plugin

The ChatGPT Retrieval Plugin lets you easily find personal or work documents by asking questions in natural language.
Python
20,818
star
7

openai-python

The official Python library for the OpenAI API
Python
19,939
star
8

gpt-3

GPT-3: Language Models are Few-Shot Learners
15,573
star
9

baselines

OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
Python
15,252
star
10

evals

Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.
Python
13,483
star
11

triton

Development repository for the Triton language and compiler
C++
11,038
star
12

DALL-E

PyTorch package for the discrete VAE used for DALL·E.
Python
10,672
star
13

shap-e

Generate 3D objects conditioned on text or images
Python
10,285
star
14

spinningup

An educational resource to help anyone learn deep reinforcement learning.
Python
8,587
star
15

tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.
Python
8,533
star
16

universe

Universe: a software platform for measuring and training an AI's general intelligence across the world's supply of games, websites and other applications.
Python
7,385
star
17

jukebox

Code for the paper "Jukebox: A Generative Model for Music"
Python
7,326
star
18

openai-node

The official Node.js / Typescript library for the OpenAI API
TypeScript
6,824
star
19

point-e

Point cloud diffusion for 3D model synthesis
Python
5,777
star
20

consistency_models

Official repo for consistency models.
Python
5,725
star
21

guided-diffusion

Python
5,000
star
22

plugins-quickstart

Get a ChatGPT plugin up and running in under 5 minutes!
Python
4,133
star
23

transformer-debugger

Python
3,607
star
24

retro

Retro Games in Gym
C
3,289
star
25

glide-text2im

GLIDE: a diffusion-based text-conditional image synthesis model
Python
3,277
star
26

glow

Code for reproducing results in "Glow: Generative Flow with Invertible 1x1 Convolutions"
Python
3,016
star
27

mujoco-py

MuJoCo is a physics engine for detailed, efficient rigid body simulations with contacts. mujoco-py allows using MuJoCo from Python 3.
Cython
2,586
star
28

openai-quickstart-node

Node.js example app from the OpenAI API quickstart tutorial
JavaScript
2,501
star
29

weak-to-strong

Python
2,341
star
30

improved-gan

Code for the paper "Improved Techniques for Training GANs"
Python
2,218
star
31

improved-diffusion

Release for Improved Denoising Diffusion Probabilistic Models
Python
2,102
star
32

roboschool

DEPRECATED: Open-source software for robot simulation, integrated with OpenAI Gym.
Python
2,064
star
33

image-gpt

Python
1,990
star
34

consistencydecoder

Consistency Distilled Diff VAE
Python
1,933
star
35

finetune-transformer-lm

Code and model for the paper "Improving Language Understanding by Generative Pre-Training"
Python
1,929
star
36

multiagent-particle-envs

Code for a multi-agent particle environment used in the paper "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments"
Python
1,871
star
37

gpt-2-output-dataset

Dataset of GPT-2 outputs for research in detection, biases, and more
Python
1,865
star
38

pixel-cnn

Code for the paper "PixelCNN++: A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and Other Modifications"
Python
1,856
star
39

human-eval

Code for the paper "Evaluating Large Language Models Trained on Code"
Python
1,755
star
40

requests-for-research

A living collection of deep learning problems
HTML
1,625
star
41

openai-quickstart-python

Python example app from the OpenAI API quickstart tutorial
1,608
star
42

gpt-discord-bot

Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages.
Python
1,569
star
43

multi-agent-emergence-environments

Environment generation code for the paper "Emergent Tool Use From Multi-Agent Autocurricula"
Python
1,557
star
44

evolution-strategies-starter

Code for the paper "Evolution Strategies as a Scalable Alternative to Reinforcement Learning"
Python
1,504
star
45

generating-reviews-discovering-sentiment

Code for "Learning to Generate Reviews and Discovering Sentiment"
Python
1,491
star
46

neural-mmo

Code for the paper "Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating Intelligent Agents"
Python
1,463
star
47

sparse_attention

Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"
Python
1,347
star
48

maddpg

Code for the MADDPG algorithm from the paper "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments"
Python
1,284
star
49

prm800k

800,000 step-level correctness labels on LLM solutions to MATH problems
Python
1,239
star
50

Video-Pre-Training

Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos
Python
1,205
star
51

following-instructions-human-feedback

1,129
star
52

universe-starter-agent

A starter agent that can solve a number of universe environments.
Python
1,086
star
53

lm-human-preferences

Code for the paper Fine-Tuning Language Models from Human Preferences
Python
1,067
star
54

dalle-2-preview

1,049
star
55

InfoGAN

Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"
Python
1,029
star
56

procgen

Procgen Benchmark: Procedurally-Generated Game-Like Gym-Environments
C++
972
star
57

supervised-reptile

Code for the paper "On First-Order Meta-Learning Algorithms"
JavaScript
955
star
58

blocksparse

Efficient GPU kernels for block-sparse matrix multiplication and convolution
Cuda
941
star
59

openai-openapi

OpenAPI specification for the OpenAI API
917
star
60

automated-interpretability

Python
875
star
61

grade-school-math

Python
859
star
62

kubernetes-ec2-autoscaler

A batch-optimized scaling manager for Kubernetes
Python
849
star
63

random-network-distillation

Code for the paper "Exploration by Random Network Distillation"
Python
847
star
64

summarize-from-feedback

Code for "Learning to summarize from human feedback"
Python
833
star
65

large-scale-curiosity

Code for the paper "Large-Scale Study of Curiosity-Driven Learning"
Python
798
star
66

multiagent-competition

Code for the paper "Emergent Complexity via Multi-agent Competition"
Python
761
star
67

imitation

Code for the paper "Generative Adversarial Imitation Learning"
Python
643
star
68

mlsh

Code for the paper "Meta-Learning Shared Hierarchies"
Python
588
star
69

iaf

Code for reproducing key results in the paper "Improving Variational Inference with Inverse Autoregressive Flow"
Python
499
star
70

mujoco-worldgen

Automatic object XML generation for Mujoco
Python
475
star
71

safety-gym

Tools for accelerating safe exploration research.
Python
421
star
72

vdvae

Repository for the paper "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images"
Python
407
star
73

coinrun

Code for the paper "Quantifying Transfer in Reinforcement Learning"
C++
381
star
74

robogym

Robotics Gym Environments
Python
370
star
75

weightnorm

Example code for Weight Normalization, from "Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks"
Python
357
star
76

atari-py

A packaged and slightly-modified version of https://github.com/bbitmaster/ale_python_interface
C++
354
star
77

openai-gemm

Open single and half precision gemm implementations
C
335
star
78

vime

Code for the paper "Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks"
Python
331
star
79

safety-starter-agents

Basic constrained RL agents used in experiments for the "Benchmarking Safe Exploration in Deep Reinforcement Learning" paper.
Python
312
star
80

ebm_code_release

Code for Implicit Generation and Generalization with Energy Based Models
Python
311
star
81

CLIP-featurevis

code for reproducing some of the diagrams in the paper "Multimodal Neurons in Artificial Neural Networks"
Python
294
star
82

gym-http-api

API to access OpenAI Gym from other languages via HTTP
Python
291
star
83

gym-soccer

Python
289
star
84

robosumo

Code for the paper "Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments"
Python
283
star
85

EPG

Code for the paper "Evolved Policy Gradients"
Python
240
star
86

phasic-policy-gradient

Code for the paper "Phasic Policy Gradient"
Python
240
star
87

orrb

Code for the paper "OpenAI Remote Rendering Backend"
C#
235
star
88

miniF2F

Formal to Formal Mathematics Benchmark
Objective-C++
202
star
89

web-crawl-q-and-a-example

Learn how to crawl your website and build a Q/A bot with the OpenAI API
Jupyter Notebook
199
star
90

atari-reset

Code for the blog post "Learning Montezuma’s Revenge from a Single Demonstration"
Python
183
star
91

spinningup-workshop

For educational materials related to the spinning up workshops.
TeX
181
star
92

train-procgen

Code for the paper "Leveraging Procedural Generation to Benchmark Reinforcement Learning"
Python
167
star
93

human-eval-infilling

Code for the paper "Efficient Training of Language Models to Fill in the Middle"
Python
142
star
94

dallify-discord-bot

Example code for using OpenAI’s NodeJS SDK with discord.js SDK to create a Discord Bot that uses Slash Commands.
TypeScript
139
star
95

gym3

Vectorized interface for reinforcement learning environments
Python
136
star
96

lean-gym

Lean
134
star
97

retro-baselines

Publicly releasable baselines for the Retro contest
Python
128
star
98

neural-gpu

Code for the Neural GPU model originally described in "Neural GPUs Learn Algorithms"
Python
120
star
99

baselines-results

Jupyter Notebook
117
star
100

go-vncdriver

Fast VNC driver
Go
116
star