• This repository has been archived on 07/Apr/2018
  • Stars
    star
    1,086
  • Rank 42,633 (Top 0.9 %)
  • Language
    Python
  • License
    MIT License
  • Created about 8 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A starter agent that can solve a number of universe environments.

This repository has been deprecated in favor of the Retro (https://github.com/openai/retro) library. See our Retro Contest (https://blog.openai.com/retro-contest) blog post for detalis.

universe-starter-agent

The codebase implements a starter agent that can solve a number of universe environments. It contains a basic implementation of the A3C algorithm, adapted for real-time environments.

Dependencies

Getting Started

conda create --name universe-starter-agent python=3.5
source activate universe-starter-agent

brew install tmux htop cmake golang libjpeg-turbo      # On Linux use sudo apt-get install -y tmux htop cmake golang libjpeg-dev

pip install "gym[atari]"
pip install universe
pip install six
pip install tensorflow
conda install -y -c https://conda.binstar.org/menpo opencv3
conda install -y numpy
conda install -y scipy

Add the following to your .bashrc so that you'll have the correct environment when the train.py script spawns new bash shells source activate universe-starter-agent

Atari Pong

python train.py --num-workers 2 --env-id PongDeterministic-v3 --log-dir /tmp/pong

The command above will train an agent on Atari Pong using ALE simulator. It will see two workers that will be learning in parallel (--num-workers flag) and will output intermediate results into given directory.

The code will launch the following processes:

  • worker-0 - a process that runs policy gradient
  • worker-1 - a process identical to process-1, that uses different random noise from the environment
  • ps - the parameter server, which synchronizes the parameters among the different workers
  • tb - a tensorboard process for convenient display of the statistics of learning

Once you start the training process, it will create a tmux session with a window for each of these processes. You can connect to them by typing tmux a in the console. Once in the tmux session, you can see all your windows with ctrl-b w. To switch to window number 0, type: ctrl-b 0. Look up tmux documentation for more commands.

To access TensorBoard to see various monitoring metrics of the agent, open http://localhost:12345/ in a browser.

Using 16 workers, the agent should be able to solve PongDeterministic-v3 (not VNC) within 30 minutes (often less) on an m4.10xlarge instance. Using 32 workers, the agent is able to solve the same environment in 10 minutes on an m4.16xlarge instance. If you run this experiment on a high-end MacBook Pro, the above job will take just under 2 hours to solve Pong.

Add '--visualise' toggle if you want to visualise the worker using env.render() as follows:

python train.py --num-workers 2 --env-id PongDeterministic-v3 --log-dir /tmp/pong --visualise

pong

For best performance, it is recommended for the number of workers to not exceed available number of CPU cores.

You can stop the experiment with tmux kill-session command.

Playing games over remote desktop

The main difference with the previous experiment is that now we are going to play the game through VNC protocol. The VNC environments are hosted on the EC2 cloud and have an interface that's different from a conventional Atari Gym environment; luckily, with the help of several wrappers (which are used within envs.py file) the experience should be similar to the agent as if it was played locally. The problem itself is more difficult because the observations and actions are delayed due to the latency induced by the network.

More interestingly, you can also peek at what the agent is doing with a VNCViewer.

Note that the default behavior of train.py is to start the remotes on a local machine. Take a look at https://github.com/openai/universe/blob/master/doc/remotes.rst for documentation on managing your remotes. Pass additional -r flag to point to pre-existing instances.

VNC Pong

python train.py --num-workers 2 --env-id gym-core.PongDeterministic-v3 --log-dir /tmp/vncpong

Peeking into the agent's environment with TurboVNC

You can use your system viewer as open vnc://localhost:5900 (or open vnc://${docker_ip}:5900) or connect TurboVNC to that ip/port. VNC password is "openai".

pong

Important caveats

One of the novel challenges in using Universe environments is that they operate in real time, and in addition, it takes time for the environment to transmit the observation to the agent. This time creates a lag: where the greater the lag, the harder it is to solve environment with today's RL algorithms. Thus, to get the best possible results it is necessary to reduce the lag, which can be achieved by having both the environments and the agent live on the same high-speed computer network. So for example, if you have a fast local network, you could host the environments on one set of machines, and the agent on another machine that can speak to the environments with low latency. Alternatively, you can run the environments and the agent on the same EC2/Azure region. Other configurations tend to have greater lag.

To keep track of your lag, look for the phrase reaction_time in stderr. If you run both the agent and the environment on nearby machines on the cloud, your reaction_time should be as low as 40ms. The reaction_time statistic is printed to stderr because we wrap our environment with the Logger wrapper, as done in here.

Generally speaking, environments that are most affected by lag are games that place a lot of emphasis on reaction time. For example, this agent is able to solve VNC Pong (gym-core.PongDeterministic-v3) in under 2 hours when both the agent and the environment are co-located on the cloud, but this agent had difficulty solving VNC Pong when the environment was on the cloud while the agent was not. This issue affects environments that place great emphasis on reaction time.

A note on tuning

This implementation has been tuned to do well on VNC Pong, and we do not guarantee its performance on other tasks. It is meant as a starting point.

Playing flash games

You may run the following command to launch the agent on the game Neon Race:

python train.py --num-workers 2 --env-id flashgames.NeonRace-v0 --log-dir /tmp/neonrace

What agent sees when playing Neon Race (you can connect to this view via note above) neon

Getting 80% of the maximal score takes between 1 and 2 hours with 16 workers, and getting to 100% of the score takes about 12 hours. Also, flash games are run at 5fps by default, so it should be possible to productively use 16 workers on a machine with 8 (and possibly even 4) cores.

Next steps

Now that you have seen an example agent, develop agents of your own. We hope that you will find doing so to be an exciting and an enjoyable task.

More Repositories

1

whisper

Robust Speech Recognition via Large-Scale Weak Supervision
Python
62,693
star
2

openai-cookbook

Examples and guides for using the OpenAI API
MDX
58,610
star
3

gym

A toolkit for developing and comparing reinforcement learning algorithms.
Python
34,442
star
4

CLIP

CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image
Jupyter Notebook
22,966
star
5

openai-python

The official Python library for the OpenAI API
Python
22,561
star
6

gpt-2

Code for the paper "Language Models are Unsupervised Multitask Learners"
Python
21,450
star
7

chatgpt-retrieval-plugin

The ChatGPT Retrieval Plugin lets you easily find personal or work documents by asking questions in natural language.
Python
21,032
star
8

baselines

OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
Python
15,622
star
9

gpt-3

GPT-3: Language Models are Few-Shot Learners
15,573
star
10

swarm

Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.
Python
14,944
star
11

evals

Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.
Python
14,607
star
12

tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.
Python
11,374
star
13

triton

Development repository for the Triton language and compiler
C++
11,077
star
14

DALL-E

PyTorch package for the discrete VAE used for DALL·E.
Python
10,760
star
15

shap-e

Generate 3D objects conditioned on text or images
Python
10,285
star
16

spinningup

An educational resource to help anyone learn deep reinforcement learning.
Python
8,587
star
17

openai-node

The official Node.js / Typescript library for the OpenAI API
TypeScript
7,703
star
18

universe

Universe: a software platform for measuring and training an AI's general intelligence across the world's supply of games, websites and other applications.
Python
7,385
star
19

jukebox

Code for the paper "Jukebox: A Generative Model for Music"
Python
7,326
star
20

point-e

Point cloud diffusion for 3D model synthesis
Python
5,777
star
21

consistency_models

Official repo for consistency models.
Python
5,725
star
22

guided-diffusion

Python
5,000
star
23

plugins-quickstart

Get a ChatGPT plugin up and running in under 5 minutes!
Python
4,133
star
24

transformer-debugger

Python
4,003
star
25

retro

Retro Games in Gym
C
3,361
star
26

glide-text2im

GLIDE: a diffusion-based text-conditional image synthesis model
Python
3,277
star
27

glow

Code for reproducing results in "Glow: Generative Flow with Invertible 1x1 Convolutions"
Python
3,016
star
28

mujoco-py

MuJoCo is a physics engine for detailed, efficient rigid body simulations with contacts. mujoco-py allows using MuJoCo from Python 3.
Cython
2,586
star
29

openai-quickstart-node

Node.js example app from the OpenAI API quickstart tutorial
JavaScript
2,534
star
30

weak-to-strong

Python
2,445
star
31

improved-gan

Code for the paper "Improved Techniques for Training GANs"
Python
2,218
star
32

human-eval

Code for the paper "Evaluating Large Language Models Trained on Code"
Python
2,204
star
33

improved-diffusion

Release for Improved Denoising Diffusion Probabilistic Models
Python
2,102
star
34

roboschool

DEPRECATED: Open-source software for robot simulation, integrated with OpenAI Gym.
Python
2,064
star
35

image-gpt

Python
2,025
star
36

consistencydecoder

Consistency Distilled Diff VAE
Python
1,933
star
37

finetune-transformer-lm

Code and model for the paper "Improving Language Understanding by Generative Pre-Training"
Python
1,929
star
38

gpt-2-output-dataset

Dataset of GPT-2 outputs for research in detection, biases, and more
Python
1,908
star
39

multiagent-particle-envs

Code for a multi-agent particle environment used in the paper "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments"
Python
1,871
star
40

pixel-cnn

Code for the paper "PixelCNN++: A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and Other Modifications"
Python
1,856
star
41

openai-quickstart-python

Python example app from the OpenAI API quickstart tutorial
1,685
star
42

requests-for-research

A living collection of deep learning problems
HTML
1,625
star
43

multi-agent-emergence-environments

Environment generation code for the paper "Emergent Tool Use From Multi-Agent Autocurricula"
Python
1,590
star
44

gpt-discord-bot

Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages.
Python
1,569
star
45

evolution-strategies-starter

Code for the paper "Evolution Strategies as a Scalable Alternative to Reinforcement Learning"
Python
1,504
star
46

generating-reviews-discovering-sentiment

Code for "Learning to Generate Reviews and Discovering Sentiment"
Python
1,491
star
47

neural-mmo

Code for the paper "Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating Intelligent Agents"
Python
1,463
star
48

prm800k

800,000 step-level correctness labels on LLM solutions to MATH problems
Python
1,371
star
49

openai-dotnet

The official .NET library for the OpenAI API
C#
1,352
star
50

openai-assistants-quickstart

OpenAI Assistants API quickstart with Next.js.
TypeScript
1,350
star
51

sparse_attention

Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"
Python
1,347
star
52

maddpg

Code for the MADDPG algorithm from the paper "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments"
Python
1,284
star
53

Video-Pre-Training

Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos
Python
1,280
star
54

openai-openapi

OpenAPI specification for the OpenAI API
1,235
star
55

lm-human-preferences

Code for the paper Fine-Tuning Language Models from Human Preferences
Python
1,185
star
56

following-instructions-human-feedback

1,129
star
57

dalle-2-preview

1,044
star
58

InfoGAN

Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"
Python
1,029
star
59

grade-school-math

Python
1,005
star
60

procgen

Procgen Benchmark: Procedurally-Generated Game-Like Gym-Environments
C++
1,005
star
61

supervised-reptile

Code for the paper "On First-Order Meta-Learning Algorithms"
JavaScript
955
star
62

blocksparse

Efficient GPU kernels for block-sparse matrix multiplication and convolution
Cuda
941
star
63

automated-interpretability

Python
896
star
64

random-network-distillation

Code for the paper "Exploration by Random Network Distillation"
Python
861
star
65

kubernetes-ec2-autoscaler

A batch-optimized scaling manager for Kubernetes
Python
849
star
66

summarize-from-feedback

Code for "Learning to summarize from human feedback"
Python
833
star
67

large-scale-curiosity

Code for the paper "Large-Scale Study of Curiosity-Driven Learning"
Python
800
star
68

multiagent-competition

Code for the paper "Emergent Complexity via Multi-agent Competition"
Python
761
star
69

imitation

Code for the paper "Generative Adversarial Imitation Learning"
Python
643
star
70

deeptype

Code for the paper "DeepType: Multilingual Entity Linking by Neural Type System Evolution"
Python
633
star
71

mlsh

Code for the paper "Meta-Learning Shared Hierarchies"
Python
588
star
72

iaf

Code for reproducing key results in the paper "Improving Variational Inference with Inverse Autoregressive Flow"
Python
499
star
73

mujoco-worldgen

Automatic object XML generation for Mujoco
Python
489
star
74

safety-gym

Tools for accelerating safe exploration research.
Python
421
star
75

vdvae

Repository for the paper "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images"
Python
407
star
76

coinrun

Code for the paper "Quantifying Transfer in Reinforcement Learning"
C++
390
star
77

robogym

Robotics Gym Environments
Python
389
star
78

weightnorm

Example code for Weight Normalization, from "Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks"
Python
357
star
79

atari-py

A packaged and slightly-modified version of https://github.com/bbitmaster/ale_python_interface
C++
354
star
80

openai-security-bots

Python
351
star
81

openai-gemm

Open single and half precision gemm implementations
C
335
star
82

vime

Code for the paper "Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks"
Python
331
star
83

safety-starter-agents

Basic constrained RL agents used in experiments for the "Benchmarking Safe Exploration in Deep Reinforcement Learning" paper.
Python
312
star
84

ebm_code_release

Code for Implicit Generation and Generalization with Energy Based Models
Python
311
star
85

CLIP-featurevis

code for reproducing some of the diagrams in the paper "Multimodal Neurons in Artificial Neural Networks"
Python
294
star
86

gym-http-api

API to access OpenAI Gym from other languages via HTTP
Python
292
star
87

gym-soccer

Python
289
star
88

sparse_autoencoder

Python
287
star
89

robosumo

Code for the paper "Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments"
Python
283
star
90

web-crawl-q-and-a-example

Learn how to crawl your website and build a Q/A bot with the OpenAI API
Jupyter Notebook
268
star
91

phasic-policy-gradient

Code for the paper "Phasic Policy Gradient"
Python
245
star
92

EPG

Code for the paper "Evolved Policy Gradients"
Python
240
star
93

orrb

Code for the paper "OpenAI Remote Rendering Backend"
C#
235
star
94

miniF2F

Formal to Formal Mathematics Benchmark
Objective-C++
202
star
95

atari-reset

Code for the blog post "Learning Montezuma’s Revenge from a Single Demonstration"
Python
183
star
96

spinningup-workshop

For educational materials related to the spinning up workshops.
TeX
181
star
97

train-procgen

Code for the paper "Leveraging Procedural Generation to Benchmark Reinforcement Learning"
Python
170
star
98

human-eval-infilling

Code for the paper "Efficient Training of Language Models to Fill in the Middle"
Python
162
star
99

openai-go

The official Go library for the OpenAI API
Go
145
star
100

dallify-discord-bot

Example code for using OpenAI’s NodeJS SDK with discord.js SDK to create a Discord Bot that uses Slash Commands.
TypeScript
139
star