Learning Structured Text Representations
Code for the paper:
Learning Structured Text Representations
Yang Liu and Mirella Lapata,
Accepted by TACL
Dependencies
This code is implemented with Tensorflow and the data preprocessing is with Gensim
Document Classification
Data
The pre-processed YELP 2013 data can be downloaded at https://drive.google.com/open?id=0BxGUKratNjbaZjFIR1MtbkdzZVU
Preprocessing
To preprocess the data, run
python prepare_data.py path-to-train path-to-dev path-to-test
This will generate a pickle file, the format for the input data can be found in the sample folder
Training
python cli.py --data_file path_to_pkl --rnn_cell lstm --batch_size 16 --dim_str 50 --dim_sem 75 --dim_output 5 --keep_prob 0.7 --opt Adagrad
--lr 0.05 --norm 1e-4 --gpu -1 --sent_attention max --doc_attention max --log_period 5000
This will train the Tree-Matrix structured attention model in the paper on the training-set and present results on the devset/testset
License
MIT