• Stars
    star
    854
  • Rank 53,369 (Top 2 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created almost 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

alfred-py: A deep learning utility library for **human**, more detail about the usage of lib to: https://zhuanlan.zhihu.com/p/341446046

alfred-py: Born For Deeplearning

PyPI downloads Github downloads

CI testing Build & deploy docs pre-commit.ci status

license Slack PRs Welcome

alfred-py can be called from terminal via alfred as a tool for deep-learning usage. It also provides massive utilities to boost your daily efficiency APIs, for instance, if you want draw a box with score and label, if you want logging in your python applications, if you want convert your model to TRT engine, just import alfred, you can get whatever you want. More usage you can read instructions below.

Functions Summary

Since many new users of alfred maybe not very familiar with it, conclude functions here briefly, more details see my updates:

  • Visualization, draw boxes, masks, keypoints is very simple, even 3D boxes on point cloud supported;
  • Command line tools, such as view your annotation data in any format (yolo, voc, coco any one);
  • Deploy, you can using alfred deploy your tensorrt models;
  • DL common utils, such as torch.device() etc;
  • Renders, render your 3D models.

A pic visualized from alfred:

alfred vis segmentation annotation in coco format

Install

To install alfred, it is very simple:

requirements:

lxml [optional]
pycocotools [optional]
opencv-python [optional]

then:

sudo pip3 install alfred-py

alfred is both a lib and a tool, you can import it's APIs, or you can directly call it inside your terminal.

A glance of alfred, after you installed above package, you will have alfred:

  • data module:

    # show VOC annotations
    alfred data vocview -i JPEGImages/ -l Annotations/
    # show coco anntations
    alfred data cocoview -j annotations/instance_2017.json -i images/
    # show yolo annotations
    alfred data yoloview -i images -l labels
    # show detection label with txt format
    alfred data txtview -i images/ -l txts/
    # show more of data
    alfred data -h
    
    # eval tools
    alfred data evalvoc -h
  • cab module:

    # count files number of a type
    alfred cab count -d ./images -t jpg
    # split a txt file into train and test
    alfred cab split -f all.txt -r 0.9,0.1 -n train,val
  • vision module;

    # extract video to images
    alfred vision extract -v video.mp4
    # combine images to video
    alfred vision 2video -d images/
  • -h to see more:

    usage: alfred [-h] [--version] {vision,text,scrap,cab,data} ...
    
    positional arguments:
      {vision,text,scrap,cab,data}
        vision              vision related commands.
        text                text related commands.
        scrap               scrap related commands.
        cab                 cabinet related commands.
        data                data related commands.
    
    optional arguments:
      -h, --help            show this help message and exit
      --version, -v         show version info.

    inside every child module, you can call it's -h as well: alfred text -h.

if you are on windows, you can install pycocotools via: pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI", we have made pycocotools as an dependencies since we need pycoco API.

Updates

alfred-py has been updating for 3 years, and it will keep going!

  • 2050-xxx: to be continue;

  • 2023.04.28: Update the 3d keypoints visualizer, now you can visualize Human3DM kpts in realtime: For detailes reference to examples/demo_o3d_server.py. The result is generated from MotionBert.

  • 2022.01.18: Now alfred support a Mesh3D visualizer server based on Open3D:

    from alfred.vis.mesh3d.o3dsocket import VisOpen3DSocket
    
    def main():
        server = VisOpen3DSocket()
        while True:
            server.update()
    
    
    if __name__ == "__main__":
        main()

    Then, you just need setup a client, send keypoints3d to server, and it will automatically visualized out. Here is what it looks like:

  • 2021.12.22: Now alfred supported keypoints visualization, almost all datasets supported in mmpose were also supported by alfred:

    from alfred.vis.image.pose import vis_pose_result
    
    # preds are poses, which is (Bs, 17, 3) for coco body
    vis_pose_result(ori_image, preds, radius=5, thickness=2, show=True)
  • 2021.12.05: You can using alfred.deploy.tensorrt for tensorrt inference now:

    from alfred.deploy.tensorrt.common import do_inference_v2, allocate_buffers_v2, build_engine_onnx_v3
    
    def engine_infer(engine, context, inputs, outputs, bindings, stream, test_image):
    
      # image_input, img_raw, _ = preprocess_np(test_image)
      image_input, img_raw, _ = preprocess_img((test_image))
      print('input shape: ', image_input.shape)
      inputs[0].host = image_input.astype(np.float32).ravel()
    
      start = time.time()
      dets, labels, masks = do_inference_v2(context, bindings=bindings, inputs=inputs,
                                            outputs=outputs, stream=stream, input_tensor=image_input)
    img_f = 'demo/demo.jpg'
    with build_engine_onnx_v3(onnx_file_path=onnx_f) as engine:
        inputs, outputs, bindings, stream = allocate_buffers_v2(engine)
        # Contexts are used to perform inference.
        with engine.create_execution_context() as context:
            print(engine.get_binding_shape(0))
            print(engine.get_binding_shape(1))
            print(engine.get_binding_shape(2))
            INPUT_SHAPE = engine.get_binding_shape(0)[-2:]
    
            print(context.get_binding_shape(0))
            print(context.get_binding_shape(1))
            dets, labels, masks, img_raw = engine_infer(
                engine, context, inputs, outputs, bindings, stream, img_f)
  • 2021.11.13: Now I add Siren SDK support!

    from functools import wraps
    from alfred.siren.handler import SirenClient
    from alfred.siren.models import ChatMessage, InvitationMessage
    
    siren = SirenClient('daybreak_account', 'password')
    
    
    @siren.on_received_invitation
    def on_received_invitation(msg: InvitationMessage):
        print('received invitation: ', msg.invitation)
        # directly agree this invitation for robots
    
    
    @siren.on_received_chat_message
    def on_received_chat_msg(msg: ChatMessage):
        print('got new msg: ', msg.text)
        siren.publish_txt_msg('I got your message O(∩_∩)O哈哈~', msg.roomId)
    
    
    if __name__ == '__main__':
        siren.loop()
    

    Using this, you can easily setup a Chatbot. By using Siren client.

  • 2021.06.24: Add a useful commandline tool, change your pypi source easily!!:

    alfred cab changesource
    

    And then your pypi will using aliyun by default!

  • 2021.05.07: Upgrade Open3D instructions: Open3D>0.9.0 no longer compatible with previous alfred-py. Please upgrade Open3D, you can build Open3D from source:

      git clone --recursive https://github.com/intel-isl/Open3D.git
      cd Open3D && mkdir build && cd build
      sudo apt install libc++abi-8-dev
      sudo apt install libc++-8-dev
      cmake .. -DPYTHON_EXECUTABLE=/usr/bin/python3
    

    Ubuntu 16.04 blow I tried all faild to build from source. So, please using open3d==0.9.0 for alfred-py.

  • 2021.04.01: A unified evaluator had added. As all we know, for many users, writting Evaluation might coupled deeply with your project. But with Alfred's help, you can do evaluation in any project by simply writting 8 lines of codes, for example, if your dataset format is Yolo, then do this:

      def infer_func(img_f):
      image = cv2.imread(img_f)
      results = config_dict['model'].predict_for_single_image(
          image, aug_pipeline=simple_widerface_val_pipeline, classification_threshold=0.89, nms_threshold=0.6, class_agnostic=True)
      if len(results) > 0:
          results = np.array(results)[:, [2, 3, 4, 5, 0, 1]]
          # xywh to xyxy
          results[:, 2] += results[:, 0]
          results[:, 3] += results[:, 1]
      return results
    
      if __name__ == '__main__':
          conf_thr = 0.4
          iou_thr = 0.5
    
          imgs_root = 'data/hand/images'
          labels_root = 'data/hand/labels'
    
          yolo_parser = YoloEvaluator(imgs_root=imgs_root, labels_root=labels_root, infer_func=infer_func)
          yolo_parser.eval_precisely()

    Then you can get your evaluation results automatically. All recall, precision, mAP will printed out. More dataset format are on-going.

  • 2021.03.10: New added ImageSourceIter class, when you want write a demo of your project which need to handle any input such as image file / folder / video file etc. You can using ImageSourceIter:

    from alfred.utils.file_io import ImageSourceIter
    
    # data_f can be image_file or image_folder or video
    iter = ImageSourceIter(ops.test_path)
    while True:
        itm = next(iter)
        if isinstance(itm, str):
            itm = cv2.imread(itm)
        # cv2.imshow('raw', itm)
        res = detect_for_pose(itm, det_model)
        cv2.imshow('res', itm)
        if iter.video_mode:
            cv2.waitKey(1)
        else:
            cv2.waitKey(0)

    And then you can avoid write anything else of deal with file glob or reading video in cv. note that itm return can be a cv array or a file path.

  • 2021.01.25: alfred now support self-defined visualization on coco format annotation (not using pycoco tools):

    image-20210125194313093

    If your dataset in coco format but visualize wrongly pls fire a issue to me, thank u!

  • 2020.09.27: Now, yolo and VOC can convert to each other, so that using Alfred you can:

    • convert yolo2voc;
    • convert voc2yolo;
    • convert voc2coco;
    • convert coco2voc;

    By this, you can convert any labeling format of each other.

  • 2020.09.08: After a long time past, alfred got some updates: We providing coco2yolo ability inside it. Users can run this command to convert your data to yolo format:

    alfred data coco2yolo -i images/ -j annotations/val_split_2020.json
    

    Only should provided is your image root path and your json file. And then all result will generated into yolo folder under images or in images parent dir.

    After that (you got your yolo folder), then you can visualize the conversion result to see if it correct or not:

    alfred data yolovview -i images/ -l labels/
    

    image-20200908164952171

  • 2020.07.27: After a long time past, alfred finally get some updates:

    image-20200727163938094

    Now, you can using alfred draw Chinese charactors on image without xxxx undefined encodes.

    from alfred.utils.cv_wrapper import put_cn_txt_on_img
    
    img = put_cn_txt_on_img(img, spt[-1], [points[0][0], points[0][1]-25], 1.0, (255, 255, 255))

    Also, you now can merge 2 VOC datasets! This is helpful when you have 2 dataset and you want merge them into a single one.

    alfred data mergevoc -h
    

    You can see more promotes.

  • 2020.03.08:Several new files added in alfred:

    alfred.utils.file_io: Provide file io utils for common purpose
    alfred.dl.torch.env: Provide seed or env setup in pytorch (same API as detectron2)
    alfred.dl.torch.distribute: utils used for distribute training when using pytorch
    
  • 2020.03.04: We have added some evaluation tool to calculate mAP for object detection model performance evaluation, it's useful and can visualize result:

    this usage is also quite simple:

    alfred data evalvoc -g ground-truth -d detection-results -im images
    

    where -g is your ground truth dir (contains xmls or txts), -d is your detection result files dir, -im is your images fodler. You only need save all your detected results into txts, one image one txt, and format like this:

    bottle 0.14981 80 1 295 500  
    bus 0.12601 36 13 404 316  
    horse 0.12526 430 117 500 307  
    pottedplant 0.14585 212 78 292 118  
    tvmonitor 0.070565 388 89 500 196 
  • 2020.02.27: We just update a license module inside alfred, say you want apply license to your project or update license, simple:

     alfred cab license -o 'MANA' -n 'YoloV3' -u 'manaai.cn'

    you can found more detail usage with alfred cab license -h

  • 2020-02-11: open3d has changed their API. we have updated new open3d inside alfred, you can simply using latest open3d and run python3 examples/draw_3d_pointcloud.py you will see this:

  • 2020-02-10: alfred now support windows (experimental);

  • 2020-02-01: 武汉加油! alfred fix windows pip install problem related to encoding 'gbk';

  • 2020-01-14: Added cabinet module, also add some utils under data module;

  • 2019-07-18: 1000 classes imagenet labelmap added. Call it from:

    from alfred.vis.image.get_dataset_label_map import imagenet_labelmap
    
    # also, coco, voc, cityscapes labelmap were all added in
    from alfred.vis.image.get_dataset_label_map import coco_labelmap
    from alfred.vis.image.get_dataset_label_map import voc_labelmap
    from alfred.vis.image.get_dataset_label_map import cityscapes_labelmap
  • 2019-07-13: We add a VOC check module in command line usage, you can now visualize your VOC format detection data like this:

    alfred data voc_view -i ./images -l labels/
    
  • 2019-05-17: We adding open3d as a lib to visual 3d point cloud in python. Now you can do some simple preparation and visual 3d box right on lidar points and show like opencv!!

    You can achieve this by only using alfred-py and open3d!

    example code can be seen under examples/draw_3d_pointcloud.py. code updated with latest open3d API!.

  • 2019-05-10: A minor updates but really useful which we called mute_tf, do you want to disable tensorflow ignoring log? simply do this!!

    from alfred.dl.tf.common import mute_tf
    mute_tf()
    import tensorflow as tf

    Then, the logging message were gone....

  • 2019-05-07: Adding some protos, now you can parsing tensorflow coco labelmap by using alfred:

    from alfred.protos.labelmap_pb2 import LabelMap
    from google.protobuf import text_format
    
    with open('coco.prototxt', 'r') as f:
        lm = LabelMap()
        lm = text_format.Merge(str(f.read()), lm)
        names_list = [i.display_name for i in lm.item]
        print(names_list)
  • 2019-04-25: Adding KITTI fusion, now you can get projection from 3D label to image like this: we will also add more fusion utils such as for nuScene dataset.

    We providing kitti fusion kitti for convert camera link 3d points to image pixel, and convert lidar link 3d points to image pixel. Roughly going through of APIs like this:

    # convert lidar prediction to image pixel
    from alfred.fusion.kitti_fusion import LidarCamCalibData, \
        load_pc_from_file, lidar_pts_to_cam0_frame, lidar_pt_to_cam0_frame
    from alfred.fusion.common import draw_3d_box, compute_3d_box_lidar_coords
    
    # consit of prediction of lidar
    # which is x,y,z,h,w,l,rotation_y
    res = [[4.481686, 5.147319, -1.0229858, 1.5728549, 3.646751, 1.5121397, 1.5486346],
           [-2.5172017, 5.0262384, -1.0679419, 1.6241353, 4.0445814, 1.4938312, 1.620804],
           [1.1783253, -2.9209857, -0.9852259, 1.5852798, 3.7360613, 1.4671413, 1.5811548]]
    
    for p in res:
        xyz = np.array([p[: 3]])
        c2d = lidar_pt_to_cam0_frame(xyz, frame_calib)
        if c2d is not None:
            cv2.circle(img, (int(c2d[0]), int(c2d[1])), 3, (0, 255, 255), -1)
        hwl = np.array([p[3: 6]])
        r_y = [p[6]]
        pts3d = compute_3d_box_lidar_coords(xyz, hwl, angles=r_y, origin=(0.5, 0.5, 0.5), axis=2)
    
        pts2d = []
        for pt in pts3d[0]:
            coords = lidar_pt_to_cam0_frame(pt, frame_calib)
            if coords is not None:
                pts2d.append(coords[:2])
        pts2d = np.array(pts2d)
        draw_3d_box(pts2d, img)

    And you can see something like this:

    note:

    compute_3d_box_lidar_coords for lidar prediction, compute_3d_box_cam_coords for KITTI label, cause KITTI label is based on camera coordinates!.

    since many users ask me how to reproduces this result, you can checkout demo file under examples/draw_3d_box.py;

  • 2019-01-25: We just adding network visualization tool for pytorch now!! How does it look? Simply print out every layer network with output shape, I believe this is really helpful for people to visualize their models!

    ➜  mask_yolo3 git:(master) ✗ python3 tests.py
    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1         [-1, 64, 224, 224]           1,792
                  ReLU-2         [-1, 64, 224, 224]               0
                  .........
               Linear-35                 [-1, 4096]      16,781,312
                 ReLU-36                 [-1, 4096]               0
              Dropout-37                 [-1, 4096]               0
               Linear-38                 [-1, 1000]       4,097,000
    ================================================================
    Total params: 138,357,544
    Trainable params: 138,357,544
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.19
    Forward/backward pass size (MB): 218.59
    Params size (MB): 527.79
    Estimated Total Size (MB): 746.57
    ----------------------------------------------------------------
    
    

    Ok, that is all. what you simply need to do is:

    from alfred.dl.torch.model_summary import summary
    from alfred.dl.torch.common import device
    
    from torchvision.models import vgg16
    
    vgg = vgg16(pretrained=True)
    vgg.to(device)
    summary(vgg, input_size=[224, 224])

    Support you input (224, 224) image, you will got this output, or you can change any other size to see how output changes. (currently not support for 1 channel image)

  • 2018-12-7: Now, we adding a extensible class for quickly write an image detection or segmentation demo.

    If you want write a demo which do inference on an image or an video or right from webcam, now you can do this in standared alfred way:

    class ENetDemo(ImageInferEngine):
    
        def __init__(self, f, model_path):
            super(ENetDemo, self).__init__(f=f)
    
            self.target_size = (512, 1024)
            self.model_path = model_path
            self.num_classes = 20
    
            self.image_transform = transforms.Compose(
                [transforms.Resize(self.target_size),
                 transforms.ToTensor()])
    
            self._init_model()
    
        def _init_model(self):
            self.model = ENet(self.num_classes).to(device)
            checkpoint = torch.load(self.model_path)
            self.model.load_state_dict(checkpoint['state_dict'])
            print('Model loaded!')
    
        def solve_a_image(self, img):
            images = Variable(self.image_transform(Image.fromarray(img)).to(device).unsqueeze(0))
            predictions = self.model(images)
            _, predictions = torch.max(predictions.data, 1)
            prediction = predictions.cpu().numpy()[0] - 1
            return prediction
    
        def vis_result(self, img, net_out):
            mask_color = np.asarray(label_to_color_image(net_out, 'cityscapes'), dtype=np.uint8)
            frame = cv2.resize(img, (self.target_size[1], self.target_size[0]))
            # mask_color = cv2.resize(mask_color, (frame.shape[1], frame.shape[0]))
            res = cv2.addWeighted(frame, 0.5, mask_color, 0.7, 1)
            return res
    
    
    if __name__ == '__main__':
        v_f = ''
        enet_seg = ENetDemo(f=v_f, model_path='save/ENet_cityscapes_mine.pth')
        enet_seg.run()

    After that, you can directly inference from video. This usage can be found at git repo:

The repo using alfred: http://github.com/jinfagang/pt_enet

  • 2018-11-6: I am so glad to announce that alfred 2.0 released!😄⛽️👏👏 Let's have a quick look what have been updated:

    # 2 new modules, fusion and vis
    from alred.fusion import fusion_utils
    

    For the module fusion contains many useful sensor fusion helper functions you may use, such as project lidar point cloud onto image.

  • 2018-08-01: Fix the video combined function not work well with sequence. Add a order algorithm to ensure video sequence right. also add some draw bbox functions into package.

    can be called like this:

  • 2018-03-16: Slightly update alfred, now we can using this tool to combine a video sequence back original video! Simply do:

    # alfred binary exectuable program
    alfred vision 2video -d ./video_images

Capable

alfred is both a library and a command line tool. It can do those things:

# extract images from video
alfred vision extract -v video.mp4
# combine image sequences into a video
alfred vision 2video -d /path/to/images
# get faces from images
alfred vision getface -d /path/contains/images/

Just try it out!!

Copyright

Alfred build by Lucas Jin with ❤️, welcome star and send PR. If you got any question, you can ask me via wechat: jintianiloveu, this code released under GPL-3 license.

More Repositories

1

tensorflow_poems

中文古诗自动作诗机器人,屌炸天,基于tensorflow1.10 api,正在积极维护升级中,快star,保持更新!
Python
3,595
star
2

yolov7_d2

🔥🔥🔥🔥 (Earlier YOLOv7 not official one) YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥
Python
3,116
star
3

weibo_terminater

Final Weibo Crawler Scrap Anything From Weibo, comments, weibo contents, followers, anything. The Terminator
Python
2,303
star
4

DCNv2_latest

DCNv2 supports decent pytorch such as torch 1.5+ (now 1.8+)
C++
564
star
5

keras_frcnn

Keras Implementation of faster-rcnn
Python
521
star
6

thor

thor: C++ helper library, for deep learning purpose
C++
264
star
7

tensorflow_novelist

模仿莎士比亚创作戏剧!屌炸天的是还能创作金庸武侠小说!快star,保持更新!!
Python
259
star
8

weibo_terminator_workflow

Update Version of weibo_terminator, This is Workflow Version aim at Get Job Done!
Python
258
star
9

faceswap_pytorch

Deep fake ready to train on any 2 pair dataset with higher resolution
Python
242
star
10

nb

Neural Network Blocks - Collect all kinds of fancy model blocks for you to build more powerful neural network model.
Python
231
star
11

pytorch_chatbot

A Marvelous ChatBot implement using PyTorch.
Python
226
star
12

CenterNet_Pro_Max

Experiments based on CenterNet (more backbones, TensorRT deployment and mask head)
221
star
13

LSTM_learn

a implement of LSTM using Keras for time series prediction regression problem
Python
214
star
14

AI-Infer-Engine-From-Zero

关于自建AI推理引擎的手册,从0开始你需要知道的所有事情
206
star
15

movenet

Google's Next Gen Pose Estimation in PyTorch
Python
122
star
16

Spider12306

基于Python3的12306抢票爬虫,10个线程开抢,智能过滤凌晨12:00到7:00发车的车次。
Python
106
star
17

pytorch_image_classifier

Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.
Python
106
star
18

kitti-ssd

Train your own data using SSD in a more clear and simple way(not include source code)
Python
101
star
19

TrafficLightsDetection

using SSD and caffe detect traffic lights on LISA dataset
Python
99
star
20

nosmpl

Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.
Python
93
star
21

ssds_pytorch

Multiple basenet MobileNet v1,v2, ResNet combined with SSD detection method and it's variants such as RFB, FSSD etc.
Python
80
star
22

simpleocv

Make a minimal OpenCV runable on any where, WIP
C++
72
star
23

yolov3_tf2

Yolov3 implemented with brand new TensorFlow 2.0 API (both train and prediction)
Python
67
star
24

yolov7-face

Next Gen Face detection based on YOLOv7
Python
55
star
25

FruitsNutsSeg

detectron2 support self-define data train
Python
50
star
26

Q-Learning

An C++ Version of Q-Learning, to Train Robot Play with Flappybird!!
C++
40
star
27

cityscapestococo

This repo contains usable code convert cityscapes to coco format (Detectron and maskrcnn-benchmark were all broken)
Python
36
star
28

tfboys

TensorFlow and Pytorch practice codes with purity and simplicity.
Python
34
star
29

OpenHandMocap

Python
33
star
30

textfrontend

单独维护的中文TTS
Python
31
star
31

bboxer

Pure, Simple yet Powerful Image Bound Box Making Tool, already cross platform, welcome star and keep updating.
C++
31
star
32

fpn_rssd

Rotated Box SSD detection Framework with FPN support, next generation object detection framework
Python
29
star
33

aural

A Tiny Project For ASR model training and Deployment
Python
28
star
34

Shadowless

A Fast and Open Source Autonomous Perception System.
C++
27
star
35

awesome_transformer

A curated list of transformer learning materials, shared blogs, technical reviews.
26
star
36

pt_mobilenetv2_deeplabv3

Fast accurate realtime segmentation with DeepLabV3 and MobileNetV2 backbone
Python
26
star
37

pytorch_cycle_gan

CycleGAN with Productive Generate APIs. Generate Any Image from Your Transfer Model.
Python
26
star
38

yolovn

Just another yolo variant.
25
star
39

wanwu_release

Wanwu models release, code will be released soon
23
star
40

spconv

Pytorch layer needed by Second Lidar detector.
C++
23
star
41

3d_detection_kit

Toolkit to Explore 3D data for 3D object detection, point cloud visualization, bev map gen etc. Using KITTI as dummy data
Python
22
star
42

pytorch_image_caption

Image Caption, Show and Tell.
Python
20
star
43

datasets

A Collection of Datasets.
19
star
44

pilgrim_torch2trt

Pilgrim Project: torch2trt, quick convert your pytorch model to TensorRT engine.
C++
19
star
45

yolov5_mask

Try add Instance Segmentation upon YoloV5
Python
18
star
46

libnms

libnms.so for object detection, can be use in libtorch or caffe or nccn or onnx or TensorRT
Cuda
17
star
47

pt_enet

Realtime segmentation with ENet, the fast and accurate segmentation net.
Python
14
star
48

GreatDarkNet

An Edit Version of darknet, and this version you can train and predict on your own datasets! more easily!
C
14
star
49

VIBE_yolov5

Using YOLOv5 as detection on VIBE
Python
13
star
50

daybreak_release

Daybreak APP release
12
star
51

gofind

gofind - your personal find helper
Go
12
star
52

cabinet

Cabinet, The Ultimate Tool Box.
Rust
12
star
53

tensorflow_yolov3

A Detailed and Optimized Implementation of Yolo-V3 in Original TensorFlow.
Python
12
star
54

pytorch_name_net

A NetWork Generate Names, Based On Conditional RNN, Set Condition And Generate Different Names.
Python
11
star
55

tensorflow_extractor

State-of-art and Reliable Text-summary and Information Extraction
Python
11
star
56

RetinaNet

Pytorch Implementation of RetinaNet with CUDA accelerate nms operation.
Python
10
star
57

gluon_ssd

Implement SSD using Gluon in only 300 lines of codes!
Python
10
star
58

m

m editor is a modern, easy to use, fast terminal editor then vim or emacs. written in pure Rust.
Rust
10
star
59

wnnx_models

Various test models in WNNX format. It can view with `pip install wnetron && wnetron`
10
star
60

seg_icnet

ICNet in TensorFlow, Real-Time Segmentation
Python
10
star
61

scraper_toolbox

Python3.6 Scraper Toolbox, You can almost Scrap Anything in this Repo, Welcome Pull Request
Python
9
star
62

fusion

Fusion package with transformation between camera and lidar, IMU etc. Autonomous and robot helper.
Python
9
star
63

blackpearl

The Black Pearl in Golang. Personal Assistant.
Go
9
star
64

mxnet_tiny5

mxnet训练自己的数据集分类,支持模型断点训练和预测单张图片
Python
9
star
65

TTS_CN

A Chinese TTS System!
Python
9
star
66

arxiv_action

企业微信机器人或钉钉机器人定制服务,自动推送arxiv最新paper
Python
9
star
67

tacotron

TensorFlow implementation of Google Tacotron. Train on Audio and Generate Speech using Text. Which can be Called TTS.
Python
8
star
68

papers

Contains many papers with categories in CV, NLP, RL Quantum etc.
8
star
69

pytorch_style_transfer

A Simple Implementation of Neural Style Transfer using Pytorch. You can generate your own art pictures now!
Python
8
star
70

yolov8

7
star
71

numgo

NumPy library in Go.
Go
7
star
72

LLaVA-Magvit2

Python
7
star
73

PoseAILiveLink

PoseAI LiveLink Compatible on macOS
C++
7
star
74

gooooup

Upload load images(files) to cloud, generate permanent link.
Go
7
star
75

mjolnir

Light weighted replacement of original thor C++ library. More simpler, more clean, more light.
C++
7
star
76

UbuntuScripts

Shell
7
star
77

MLLM_Factory

A Dead Simple and Modularized Multi-Modal Training and Finetune Framework. Compatible to any LLaVA/Flamingo/QwenVL/MiniGemini etc series models.
7
star
78

visiontransformers

Vision Transformers that you need.
Python
6
star
79

sherpa_ort

ONNXRuntime ASR C++
C++
6
star
80

minitr

Exploration on Micro Transformers, Unleash the power of mini-transformers!
Python
6
star
81

tensorflow_wgan

A Tensorfow Version of the state-of-art Wasserstein GAN, image super resolution, black image colorful, more function are applying...just star!
Python
6
star
82

tensorflow_classifier

Simple and over-through process for Tensorflow classify images, using own dataset
Python
6
star
83

mxnet_ssd

Another maintained mxnet ssd version
Python
6
star
84

caffe_tiny5

Caffe tutorial for train own data and predict using python
Python
6
star
85

mmc

Next Gen MMD runs on all platforms, Windows, Linux, Mac. Will support exchange between vmd and fbx format.
C++
6
star
86

squeezeseg_pytorch

Realtime Point Cloud Segmentation
Python
6
star
87

vits_cpp

C++ and ONNXRuntime based VITS voice synthesis
C++
6
star
88

tf_pose_realtime

Realtime Openpose with MobileNetV2 backend
PureBasic
6
star
89

realrender

3D mesh render without pain.
C++
6
star
90

mono_odometry

Visual Odometry Using Mono Camera
C++
6
star
91

AwesomeLLM

6
star
92

person_tracking

person tracking in ros
C++
5
star
93

sparrow

The message server in Golang, like WeChat.
JavaScript
5
star
94

algorithm

Contains all kinds of algorithm write in Python and C++, some with Rust.
Python
5
star
95

CaffeHandsOn

This is a Caffe hands on tutorial.
Python
5
star
96

sak

Swiss Army Knife for secret hacking and sniffering
Go
5
star
97

instance_seg_tf

Instance Segmentation with discriminate loss
Python
5
star
98

efficientformers

Collection of efficient transformers.
Python
5
star
99

mumoda

Library to lean big models combined with Text and Image. And then Diffusion!
Python
5
star
100

picbed

Picbed utils for many open APIs
Go
4
star