• Stars
    star
    205
  • Rank 191,264 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 4 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

DSNet: A Flexible Detect-to-Summarize Network for Video Summarization

DSNet: A Flexible Detect-to-Summarize Network for Video Summarization [paper]

UnitTest License: MIT

framework

A PyTorch implementation of our paper DSNet: A Flexible Detect-to-Summarize Network for Video Summarization by Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou. Published in IEEE Transactions on Image Processing.

Getting Started

This project is developed on Ubuntu 16.04 with CUDA 9.0.176.

First, clone this project to your local environment.

git clone https://github.com/li-plus/DSNet.git

Create a virtual environment with python 3.6, preferably using Anaconda.

conda create --name dsnet python=3.6
conda activate dsnet

Install python dependencies.

pip install -r requirements.txt

Datasets Preparation

Download the pre-processed datasets into datasets/ folder, including TVSum, SumMe, OVP, and YouTube datasets.

mkdir -p datasets/ && cd datasets/
wget https://www.dropbox.com/s/tdknvkpz1jp6iuz/dsnet_datasets.zip
unzip dsnet_datasets.zip

If the Dropbox link is unavailable to you, try downloading from below links.

Now the datasets structure should look like

DSNet
โ””โ”€โ”€ datasets/
    โ”œโ”€โ”€ eccv16_dataset_ovp_google_pool5.h5
    โ”œโ”€โ”€ eccv16_dataset_summe_google_pool5.h5
    โ”œโ”€โ”€ eccv16_dataset_tvsum_google_pool5.h5
    โ”œโ”€โ”€ eccv16_dataset_youtube_google_pool5.h5
    โ””โ”€โ”€ readme.txt

Pre-trained Models

Our pre-trained models are now available online. You may download them for evaluation, or you may skip this section and train a new one from scratch.

mkdir -p models && cd models
# anchor-based model
wget https://www.dropbox.com/s/0jwn4c1ccjjysrz/pretrain_ab_basic.zip
unzip pretrain_ab_basic.zip
# anchor-free model
wget https://www.dropbox.com/s/2hjngmb0f97nxj0/pretrain_af_basic.zip
unzip pretrain_af_basic.zip

To evaluate our pre-trained models, type:

# evaluate anchor-based model
python evaluate.py anchor-based --model-dir ../models/pretrain_ab_basic/ --splits ../splits/tvsum.yml ../splits/summe.yml
# evaluate anchor-free model
python evaluate.py anchor-free --model-dir ../models/pretrain_af_basic/ --splits ../splits/tvsum.yml ../splits/summe.yml --nms-thresh 0.4

If everything works fine, you will get similar F-score results as follows.

TVSum SumMe
Anchor-based 62.05 50.19
Anchor-free 61.86 51.18

Training

Anchor-based

To train anchor-based attention model on TVSum and SumMe datasets with canonical settings, run

python train.py anchor-based --model-dir ../models/ab_basic --splits ../splits/tvsum.yml ../splits/summe.yml

To train on augmented and transfer datasets, run

python train.py anchor-based --model-dir ../models/ab_tvsum_aug/ --splits ../splits/tvsum_aug.yml
python train.py anchor-based --model-dir ../models/ab_summe_aug/ --splits ../splits/summe_aug.yml
python train.py anchor-based --model-dir ../models/ab_tvsum_trans/ --splits ../splits/tvsum_trans.yml
python train.py anchor-based --model-dir ../models/ab_summe_trans/ --splits ../splits/summe_trans.yml

To train with LSTM, Bi-LSTM or GCN feature extractor, specify the --base-model argument as lstm, bilstm, or gcn. For example,

python train.py anchor-based --model-dir ../models/ab_basic --splits ../splits/tvsum.yml ../splits/summe.yml --base-model lstm

Anchor-free

Much similar to anchor-based models, to train on canonical TVSum and SumMe, run

python train.py anchor-free --model-dir ../models/af_basic --splits ../splits/tvsum.yml ../splits/summe.yml --nms-thresh 0.4

Note that NMS threshold is set to 0.4 for anchor-free models.

Evaluation

To evaluate your anchor-based models, run

python evaluate.py anchor-based --model-dir ../models/ab_basic/ --splits ../splits/tvsum.yml ../splits/summe.yml

For anchor-free models, remember to specify NMS threshold as 0.4.

python evaluate.py anchor-free --model-dir ../models/af_basic/ --splits ../splits/tvsum.yml ../splits/summe.yml --nms-thresh 0.4

Generating Shots with KTS

Based on the public datasets provided by DR-DSN, we apply KTS algorithm to generate video shots for OVP and YouTube datasets. Note that the pre-processed datasets already contain these video shots. To re-generate video shots, run

python make_shots.py --dataset ../datasets/eccv16_dataset_ovp_google_pool5.h5
python make_shots.py --dataset ../datasets/eccv16_dataset_youtube_google_pool5.h5

Using Custom Videos

Training & Validation

We provide scripts to pre-process custom video data, like the raw videos in custom_data folder.

First, create an h5 dataset. Here --video-dir contains several MP4 videos, and --label-dir contains ground truth user summaries for each video. The user summary of a video is a UxN binary matrix, where U denotes the number of annotators and N denotes the number of frames in the original video.

python make_dataset.py --video-dir ../custom_data/videos --label-dir ../custom_data/labels \
  --save-path ../custom_data/custom_dataset.h5 --sample-rate 15

Then split the dataset into training and validation sets and generate a split file to index them.

python make_split.py --dataset ../custom_data/custom_dataset.h5 \
  --train-ratio 0.67 --save-path ../custom_data/custom.yml

Now you may train on your custom videos using the split file.

python train.py anchor-based --model-dir ../models/custom --splits ../custom_data/custom.yml
python evaluate.py anchor-based --model-dir ../models/custom --splits ../custom_data/custom.yml

Inference

To predict the summary of a raw video, use infer.py. For example, run

python infer.py anchor-based --ckpt-path ../models/custom/checkpoint/custom.yml.0.pt \
  --source ../custom_data/videos/EE-bNr36nyA.mp4 --save-path ./output.mp4

Acknowledgments

We gratefully thank the below open-source repo, which greatly boost our research.

  • Thank KTS for the effective shot generation algorithm.
  • Thank DR-DSN for the pre-processed public datasets.
  • Thank VASNet for the training and evaluation pipeline.

Citation

If you find our codes or paper helpful, please consider citing.

@article{zhu2020dsnet,
  title={DSNet: A Flexible Detect-to-Summarize Network for Video Summarization},
  author={Zhu, Wencheng and Lu, Jiwen and Li, Jiahao and Zhou, Jie},
  journal={IEEE Transactions on Image Processing},
  volume={30},
  pages={948--962},
  year={2020}
}

More Repositories

1

chatglm.cpp

C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4
C++
2,854
star
2

chat4u

็”จๅพฎไฟก่Šๅคฉ่ฎฐๅฝ•่ฎญ็ปƒไธ€ไธชไฝ ไธ“ๅฑž็š„่Šๅคฉๆœบๅ™จไบบ
Python
140
star
3

seam-carving

A super-fast Python implementation of seam carving algorithm for intelligent image resizing.
Python
93
star
4

redbase-cpp

A simple relational database based on Stanford CS346 RedBase, implemented in elegant modern C++14.
C++
47
star
5

rouge-metric

A Python wrapper of the official ROUGE-1.5.5.pl script and a re-implementation of full ROUGE metrics.
Perl
19
star
6

undergrad

My undergraduate projects at THU-CST
Jupyter Notebook
11
star
7

SSM-VOS

Separable Structure Modeling for Semi-supervised Video Object Segmentation
Python
8
star
8

socks5-proxy

A minimal SOCKS5 proxy written in C.
C
7
star
9

tinypt

A tiny path tracer accelerated by OpenMP & CUDA.
C++
6
star
10

secure-socks

A mini encrypted socks tunnel to bypass the firewall.
Python
5
star
11

nanoRLHF

Train a tiny LLaMA model from scratch to repeat your words using Reinforcement Learning from Human Feedback (RLHF)
Python
2
star
12

mini-router

A mini-router supporting basic ARP protocol, IP forwarding, ICMP echo / reply, and RIP routing.
C
2
star
13

echo-server

A simple echo server using event-driven programming.
C
2
star
14

csapp

My CSAPP Lab Solutions
C
2
star
15

GPA-Calculator

A GPA calculator for undergraduate transcripts of Tsinghua University.
HTML
2
star
16

homepage

My homepage using starter-academic template, powered by netlify
Jupyter Notebook
1
star
17

Decaf-Compiler

2019-Fall Compiler Construction.
Java
1
star
18

li-plus

1
star
19

tinynn

An educational PyTorch-like neural network framework based on NumPy
Python
1
star
20

cs144

An elegant implementation for Stanford CS144 TCP Lab
C++
1
star
21

Router-Lab

2019-Fall Computer Networks
C++
1
star