• Stars
    star
    566
  • Rank 78,774 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 3 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Parsers and visualizations for chats
chat-miner: turn your chats into artwork

chat-miner: turn your chats into artwork

PyPI Version License: MIT Downloads codecov Code style: black Imports: isort

chat-miner provides lean parsers for every major platform transforming chats into pandas dataframes. Artistic visualizations allow you to explore your data and create artwork from your chats.

1. Installation

Latest release including dependencies can be installed via PyPI:

pip install chat-miner

If you're interested in contributing, running the latest source code, or just like to build everything yourself:

git clone https://github.com/joweich/chat-miner.git
cd chat-miner
pip install -r requirements.txt

2. Exporting chat logs

Have a look at the official tutorials for WhatsApp, Signal, Telegram, Facebook Messenger, or Instagram Chats to learn how to export chat logs for your platform.

3. Parsing

Following code showcases the WhatsAppParser module. The usage of SignalParser, TelegramJsonParser, FacebookMessengerParser, and InstagramJsonParser follows the same pattern.

from chatminer.chatparsers import WhatsAppParser

parser = WhatsAppParser(FILEPATH)
parser.parse_file()
df = parser.parsed_messages.get_df()

4. Visualizing

import chatminer.visualizations as vis
import matplotlib.pyplot as plt

4.1 Heatmap: Message count per day

fig, ax = plt.subplots(2, 1, figsize=(9, 3))
ax[0] = vis.calendar_heatmap(df, year=2020, cmap='Oranges', ax=ax[0])
ax[1] = vis.calendar_heatmap(df, year=2021, linewidth=0, monthly_border=True, ax=ax[1])

4.2 Sunburst: Message count per daytime

fig, ax = plt.subplots(1, 2, figsize=(7, 3), subplot_kw={'projection': 'polar'})
ax[0] = vis.sunburst(df, highlight_max=True, isolines=[2500, 5000], isolines_relative=False, ax=ax[0])
ax[1] = vis.sunburst(df, highlight_max=False, isolines=[0.5, 1], color='C1', ax=ax[1])

4.3 Wordcloud: Word frequencies

fig, ax = plt.subplots(figsize=(8, 3))
stopwords = ['these', 'are', 'stopwords']
kwargs={"background_color": "white", "width": 800, "height": 300, "max_words": 500}
ax = vis.wordcloud(df, ax=ax, stopwords=stopwords, **kwargs)

4.4 Radarchart: Message count per weekday

if not vis.is_radar_registered():
	vis.radar_factory(7, frame="polygon")
fig, ax = plt.subplots(1, 2, figsize=(7, 3), subplot_kw={'projection': 'radar'})
ax[0] = vis.radar(df, ax=ax[0])
ax[1] = vis.radar(df, ax=ax[1], color='C1', alpha=0)