Inference Helper
- This is a wrapper of deep learning frameworks especially for inference
- This class provides a common interface to use various deep learnig frameworks, so that you can use the same application code
Supported frameworks
- TensorFlow Lite
- TensorFlow Lite with delegate (XNNPACK, GPU, EdgeTPU, NNAPI)
- TensorRT (GPU, DLA)
- OpenCV(dnn) (with GPU)
- OpenVINO with OpenCV (xml+bin)
- ncnn (with Vulkan)
- MNN (with Vulkan)
- SNPE (Snapdragon Neural Processing Engine SDK (Qualcomm Neural Processing SDK for AI v1.51.0))
- Arm NN
- NNabla (with CUDA)
- ONNX Runtime (with CUDA)
- LibTorch (with CUDA)
- TensorFlow (with GPU)
Supported targets
- Windows 10 (Visual Studio 2019 x64)
- Linux (x64, armv7, aarch64)
- Android (armeabi-v7a, arm64-v8a)
CI Status
- Unchedked(blank) doesn't mean that the framework is unsupported. Unchecked just means that the framework is not tested in CI. For instance, TensorRT on Windows/Linux works and I confirmed it in my PC, but can't run it in CI.
No Library
means a pre-built library is not provided so that I cannot confirm it in CI. It may work if you build a library by yourself.
Sample projects
- https://github.com/iwatake2222/InferenceHelper_Sample
- https://github.com/iwatake2222/play_with_tflite
- https://github.com/iwatake2222/play_with_tensorrt
- https://github.com/iwatake2222/play_with_ncnn
- https://github.com/iwatake2222/play_with_mnn
Usage
Please refer to https://github.com/iwatake2222/InferenceHelper_Sample
Installation
- Add this repository into your project (Using
git submodule
is recommended) - Download prebuilt libraries
sh third_party/download_prebuilt_libraries.sh
Additional steps
You need some additional steps if you use the frameworks listed below
Additional steps: OpenCV / OpenVINO
- Install OpenCV or OpenVINO
- You may need to set/modify
OpenCV_DIR
andPATH
environment variable - To use OpenVINO, you may need to run
C:\Program Files (x86)\Intel\openvino_2021\bin\setupvars.bat
orsource /opt/intel/openvino_2021/bin/setupvars.sh
- You may need to set/modify
Additional steps: TensorRT
- Install CUDA + cuDNN
- Install TensorRT 8.x
Additional steps: Tensorflow Lite (EdgeTPU)
- Install the following library
- Linux: https://github.com/google-coral/libedgetpu/releases/download/release-grouper/edgetpu_runtime_20210726.zip
- Windows: https://github.com/google-coral/libedgetpu/releases/download/release-frogfish/edgetpu_runtime_20210119.zip
- the latest version doesn't work
- it may be better to delete
C:\Windows\System32\edgetpu.dll
to ensure the program uses our pre-built library
Additional steps: ncnn
- Install Vulkan
- You need Vulkan even if you don't use it because the pre-built libraries require it. Otherwise you need to build libraries by yourself disabling Vulkan
- https://vulkan.lunarg.com/sdk/home
- Windows
- https://sdk.lunarg.com/sdk/download/latest/windows/vulkan-sdk.exe
- It's better to check
(Optional) Debuggable Shader API Libraries -64-bit
, so that you can use Debug in Visual Studio
- Linux (x64)
wget https://sdk.lunarg.com/sdk/download/latest/linux/vulkan-sdk.tar.gz tar xzvf vulkan-sdk.tar.gz export VULKAN_SDK=$(pwd)/1.2.198.1/x86_64 sudo apt install -y vulkan-utils libvulkan1 libvulkan-dev
Additional steps: SNPE
- Download library from https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk/tools
- Extract
snpe-1.51.0.zip
, then placelib
andinclude
folders tothird_party/snpe_prebuilt
Note:
Debug
mode in Visual Studio doesn't work for ncnn, NNabla and LibTorch because debuggable libraries are not providedDebug
will cause unexpected bahavior, so useRelease
orRelWithDebInfo
- See
third_party/download_prebuilt_libraries.sh
andthird_party/cmakes/*
to check which libraries are being used. For instance, libraries without GPU(CUDA/Vulkan) are used to be safe. So, if you want to use GPU, modify these files.
Project settings in CMake
- Add InferenceHelper to your project
set(INFERENCE_HELPER_DIR ${CMAKE_CURRENT_LIST_DIR}/../../InferenceHelper/) add_subdirectory(${INFERENCE_HELPER_DIR}/inference_helper inference_helper) target_include_directories(${LibraryName} PUBLIC ${INFERENCE_HELPER_DIR}/inference_helper) target_link_libraries(${LibraryName} InferenceHelper)
CMake options
-
Deep learning framework:
- You can enable multiple options althoguh the following example enables just one option
# OpenCV (dnn), OpenVINO cmake .. -DINFERENCE_HELPER_ENABLE_OPENCV=on # Tensorflow Lite cmake .. -DINFERENCE_HELPER_ENABLE_TFLITE=on # Tensorflow Lite (XNNPACK) cmake .. -DINFERENCE_HELPER_ENABLE_TFLITE_DELEGATE_XNNPACK=on # Tensorflow Lite (GPU) cmake .. -DINFERENCE_HELPER_ENABLE_TFLITE_DELEGATE_GPU=on # Tensorflow Lite (EdgeTPU) cmake .. -DINFERENCE_HELPER_ENABLE_TFLITE_DELEGATE_EDGETPU=on # Tensorflow Lite (NNAPI) cmake .. -DINFERENCE_HELPER_ENABLE_TFLITE_DELEGATE_NNAPI=on # TensorRT cmake .. -DINFERENCE_HELPER_ENABLE_TENSORRT=on # ncnn, ncnn + vulkan cmake .. -DINFERENCE_HELPER_ENABLE_NCNN=on # MNN (+ Vulkan) cmake .. -DINFERENCE_HELPER_ENABLE_MNN=on # SNPE cmake .. -DINFERENCE_HELPER_ENABLE_SNPE=on # Arm NN cmake .. -DINFERENCE_HELPER_ENABLE_ARMNN=on # NNabla cmake .. -DINFERENCE_HELPER_ENABLE_NNABLA=on # NNabla with CUDA cmake .. -DINFERENCE_HELPER_ENABLE_NNABLA_CUDA=on # ONNX Runtime cmake .. -DINFERENCE_HELPER_ENABLE_ONNX_RUNTIME=on # ONNX Runtime with CUDA cmake .. -DINFERENCE_HELPER_ENABLE_ONNX_RUNTIME_CUDA=on # LibTorch cmake .. -DINFERENCE_HELPER_ENABLE_LIBTORCH=on # LibTorch with CUDA cmake .. -DINFERENCE_HELPER_ENABLE_LIBTORCH_CUDA=on # TensorFlow cmake .. -DINFERENCE_HELPER_ENABLE_TENSORFLOW=on # TensorFlow with GPU cmake .. -DINFERENCE_HELPER_ENABLE_TENSORFLOW_GPU=on
-
Enable/Disable preprocess using OpenCV:
- By disabling this option, InferenceHelper is not dependent on OpenCV
cmake .. -INFERENCE_HELPER_ENABLE_PRE_PROCESS_BY_OPENCV=off
Structure
APIs
InferenceHelper
Enumeration
typedef enum {
kOpencv,
kOpencvGpu,
kTensorflowLite,
kTensorflowLiteXnnpack,
kTensorflowLiteGpu,
kTensorflowLiteEdgetpu,
kTensorflowLiteNnapi,
kTensorrt,
kNcnn,
kNcnnVulkan,
kMnn,
kSnpe,
kArmnn,
kNnabla,
kNnablaCuda,
kOnnxRuntime,
kOnnxRuntimeCuda,
kLibtorch,
kLibtorchCuda,
kTensorflow,
kTensorflowGpu,
} HelperType;
static InferenceHelper* Create(const HelperType helper_type)
- Create InferenceHelper instance for the selected framework
std::unique_ptr<InferenceHelper> inference_helper(InferenceHelper::Create(InferenceHelper::kTensorflowLite));
static void PreProcessByOpenCV(const InputTensorInfo& input_tensor_info, bool is_nchw, cv::Mat& img_blob)
- Run preprocess (convert image to blob(NCHW or NHWC))
- This is just a helper function. You may not use this function.
- Available when
INFERENCE_HELPER_ENABLE_PRE_PROCESS_BY_OPENCV=on
- Available when
InferenceHelper::PreProcessByOpenCV(input_tensor_info, false, img_blob);
int32_t SetNumThreads(const int32_t num_threads)
- Set the number of threads to be used
- This function needs to be called before initialize
inference_helper->SetNumThreads(4);
int32_t SetCustomOps(const std::vector<std::pair<const char*, const void*>>& custom_ops)
- Set custom ops
- This function needs to be called before initialize
std::vector<std::pair<const char*, const void*>> custom_ops;
custom_ops.push_back(std::pair<const char*, const void*>("Convolution2DTransposeBias", (const void*)mediapipe::tflite_operations::RegisterConvolution2DTransposeBias()));
inference_helper->SetCustomOps(custom_ops);
int32_t Initialize(const std::string& model_filename, std::vector& input_tensor_info_list, std::vector& output_tensor_info_list)
- Initialize inference helper
- Load model
- Set tensor information
std::vector<InputTensorInfo> input_tensor_list;
InputTensorInfo input_tensor_info("input", TensorInfo::TENSOR_TYPE_FP32, false); /* name, data_type, NCHW or NHWC */
input_tensor_info.tensor_dims = { 1, 224, 224, 3 };
input_tensor_info.data_type = InputTensorInfo::kDataTypeImage;
input_tensor_info.data = img_src.data;
input_tensor_info.image_info.width = img_src.cols;
input_tensor_info.image_info.height = img_src.rows;
input_tensor_info.image_info.channel = img_src.channels();
input_tensor_info.image_info.crop_x = 0;
input_tensor_info.image_info.crop_y = 0;
input_tensor_info.image_info.crop_width = img_src.cols;
input_tensor_info.image_info.crop_height = img_src.rows;
input_tensor_info.image_info.is_bgr = false;
input_tensor_info.image_info.swap_color = false;
input_tensor_info.normalize.mean[0] = 0.485f; /* https://github.com/onnx/models/tree/master/vision/classification/mobilenet#preprocessing */
input_tensor_info.normalize.mean[1] = 0.456f;
input_tensor_info.normalize.mean[2] = 0.406f;
input_tensor_info.normalize.norm[0] = 0.229f;
input_tensor_info.normalize.norm[1] = 0.224f;
input_tensor_info.normalize.norm[2] = 0.225f;
input_tensor_list.push_back(input_tensor_info);
std::vector<OutputTensorInfo> output_tensor_list;
output_tensor_list.push_back(OutputTensorInfo("MobilenetV2/Predictions/Reshape_1", TensorInfo::TENSOR_TYPE_FP32));
inference_helper->initialize("mobilenet_v2_1.0_224.tflite", input_tensor_list, output_tensor_list);
int32_t Finalize(void)
- Finalize inference helper
inference_helper->Finalize();
int32_t PreProcess(const std::vector& input_tensor_info_list)
- Run preprocess
- Call this function before invoke
- Call this function even if the input data is already pre-processed in order to copy data to memory
- Note : Some frameworks don't support crop, resize. So, it's better to resize image before calling preProcess.
inference_helper->PreProcess(input_tensor_list);
int32_t Process(std::vector& output_tensor_info_list)
- Run inference
inference_helper->Process(output_tensor_info_list)
TensorInfo (InputTensorInfo, OutputTensorInfo)
Enumeration
enum {
kTensorTypeNone,
kTensorTypeUint8,
kTensorTypeInt8,
kTensorTypeFp32,
kTensorTypeInt32,
kTensorTypeInt64,
};
Properties
std::string name; // [In] Set the name_ of tensor
int32_t id; // [Out] Do not modify (Used in InferenceHelper)
int32_t tensor_type; // [In] The type of tensor (e.g. kTensorTypeFp32)
std::vector<int32_t> tensor_dims; // InputTensorInfo: [In] The dimentions of tensor. (If empty at initialize, the size is updated from model info.)
// OutputTensorInfo: [Out] The dimentions of tensor is set from model information
bool is_nchw; // [IN] NCHW or NHWC
InputTensorInfo
Enumeration
enum {
kDataTypeImage,
kDataTypeBlobNhwc, // data_ which already finished preprocess(color conversion, resize, normalize_, etc.)
kDataTypeBlobNchw,
};
Properties
void* data; // [In] Set the pointer to image/blob
int32_t data_type; // [In] Set the type of data_ (e.g. kDataTypeImage)
struct {
int32_t width;
int32_t height;
int32_t channel;
int32_t crop_x;
int32_t crop_y;
int32_t crop_width;
int32_t crop_height;
bool is_bgr; // used when channel == 3 (true: BGR, false: RGB)
bool swap_color;
} image_info; // [In] used when data_type_ == kDataTypeImage
struct {
float mean[3];
float norm[3];
} normalize; // [In] used when data_type_ == kDataTypeImage
OutputTensorInfo
Properties
void* data; // [Out] Pointer to the output data_
struct {
float scale;
uint8_t zero_point;
} quant; // [Out] Parameters for dequantization (convert uint8 to float)
float* GetDataAsFloat()
- Get output data in the form of FP32
- When tensor type is INT8 (quantized), the data is converted to FP32 (dequantized)
const float* val_float = output_tensor_list[0].GetDataAsFloat();
License
- InferenceHelper
- https://github.com/iwatake2222/InferenceHelper
- Copyright 2020 iwatake2222
- Licensed under the Apache License, Version 2.0
Acknowledgements
- This project utilizes OSS (Open Source Software)