• Stars
    star
    237
  • Rank 169,885 (Top 4 %)
  • Language
    Python
  • License
    GNU Lesser Genera...
  • Created about 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The PyTorch version of STGCN.

Spatio-Temporal Graph Convolutional Networks

issues forks stars License

About

The PyTorch version of STGCN implemented for the paper Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting.

Paper

https://arxiv.org/abs/1709.04875

Related works

  1. TCN: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
  2. GLU and GTU: Language Modeling with Gated Convolutional Networks
  3. ChebNet: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
  4. GCN: Semi-Supervised Classification with Graph Convolutional Networks

Related code

  1. TCN: https://github.com/locuslab/TCN
  2. ChebNet: https://github.com/mdeff/cnn_graph
  3. GCN: https://github.com/tkipf/pygcn

Dataset

Source

  1. METR-LA: DCRNN author's Google Drive
  2. PEMS-BAY: DCRNN author's Google Drive
  3. PeMSD7(M): STGCN author's GitHub repository

Preprocessing

Using the formula from ChebNet:

Model structure

Differents of code between mine and author's

  1. Fix bugs
  2. Add Early Stopping approach
  3. Add Dropout approach
  4. Offer a different set of hyperparameters
  5. Offer config files for two different categories graph convolution (ChebyGraphConv and GraphConv)
  6. Add datasets METR-LA and PEMS-BAY
  7. Adopt a different data preprocessing method

Requirements

To install requirements:

pip3 install -r requirements.txt