• Stars
    star
    626
  • Rank 71,755 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 4 years ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A Python SDK for Vertex AI, a fully managed, end-to-end platform for data science and machine learning.

Vertex AI SDK for Python

GA pypi versions unit-tests system-tests sample-tests

Vertex AI: Google Vertex AI is an integrated suite of machine learning tools and services for building and using ML models with AutoML or custom code. It offers both novices and experts the best workbench for the entire machine learning development lifecycle.

Quick Start

In order to use this library, you first need to go through the following steps:

  1. Select or create a Cloud Platform project.
  2. Enable billing for your project.
  3. Enable the Vertex AI API.
  4. Setup Authentication.

Installation

Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.

With virtualenv, it's possible to install this library without needing system install permissions, and without clashing with the installed system dependencies.

Mac/Linux

pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-cloud-aiplatform

Windows

pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-cloud-aiplatform

Supported Python Versions

Python >= 3.7

Deprecated Python Versions

Python == 3.6.

The last version of this library compatible with Python 3.6 is google-cloud-aiplatform==1.12.1.

Overview

This section provides a brief overview of the Vertex AI SDK for Python. You can also reference the notebooks in vertex-ai-samples for examples.

All publicly available SDK features can be found in the google/cloud/aiplatform directory. Under the hood, Vertex SDK builds on top of GAPIC, which stands for Google API CodeGen. The GAPIC library code sits in google/cloud/aiplatform_v1 and google/cloud/aiplatform_v1beta1, and it is auto-generated from Google's service proto files.

For most developers' programmatic needs, they can follow these steps to figure out which libraries to import:

  1. Look through google/cloud/aiplatform first -- Vertex SDK's APIs will almost always be easier to use and more concise comparing with GAPIC
  2. If the feature that you are looking for cannot be found there, look through aiplatform_v1 to see if it's available in GAPIC
  3. If it is still in beta phase, it will be available in aiplatform_v1beta1

If none of the above scenarios could help you find the right tools for your task, please feel free to open a github issue and send us a feature request.

Importing

SDK functionality can be used from the root of the package:

from google.cloud import aiplatform

Initialization

Initialize the SDK to store common configurations that you use with the SDK.

aiplatform.init(
    # your Google Cloud Project ID or number
    # environment default used is not set
    project='my-project',

    # the Vertex AI region you will use
    # defaults to us-central1
    location='us-central1',

    # Google Cloud Storage bucket in same region as location
    # used to stage artifacts
    staging_bucket='gs://my_staging_bucket',

    # custom google.auth.credentials.Credentials
    # environment default credentials used if not set
    credentials=my_credentials,

    # customer managed encryption key resource name
    # will be applied to all Vertex AI resources if set
    encryption_spec_key_name=my_encryption_key_name,

    # the name of the experiment to use to track
    # logged metrics and parameters
    experiment='my-experiment',

    # description of the experiment above
    experiment_description='my experiment description'
)

Datasets

Vertex AI provides managed tabular, text, image, and video datasets. In the SDK, datasets can be used downstream to train models.

To create a tabular dataset:

my_dataset = aiplatform.TabularDataset.create(
    display_name="my-dataset", gcs_source=['gs://path/to/my/dataset.csv'])

You can also create and import a dataset in separate steps:

from google.cloud import aiplatform

my_dataset = aiplatform.TextDataset.create(
    display_name="my-dataset")

my_dataset.import(
    gcs_source=['gs://path/to/my/dataset.csv']
    import_schema_uri=aiplatform.schema.dataset.ioformat.text.multi_label_classification
)

To get a previously created Dataset:

dataset = aiplatform.ImageDataset('projects/my-project/location/us-central1/datasets/{DATASET_ID}')

Vertex AI supports a variety of dataset schemas. References to these schemas are available under the aiplatform.schema.dataset namespace. For more information on the supported dataset schemas please refer to the Preparing data docs.

Training

The Vertex AI SDK for Python allows you train Custom and AutoML Models.

You can train custom models using a custom Python script, custom Python package, or container.

Preparing Your Custom Code

Vertex AI custom training enables you to train on Vertex AI datasets and produce Vertex AI models. To do so your script must adhere to the following contract:

It must read datasets from the environment variables populated by the training service:

os.environ['AIP_DATA_FORMAT']  # provides format of data
os.environ['AIP_TRAINING_DATA_URI']  # uri to training split
os.environ['AIP_VALIDATION_DATA_URI']  # uri to validation split
os.environ['AIP_TEST_DATA_URI']  # uri to test split

Please visit Using a managed dataset in a custom training application for a detailed overview.

It must write the model artifact to the environment variable populated by the training service:

os.environ['AIP_MODEL_DIR']

Running Training

job = aiplatform.CustomTrainingJob(
    display_name="my-training-job",
    script_path="training_script.py",
    container_uri="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-2:latest",
    requirements=["gcsfs==0.7.1"],
    model_serving_container_image_uri="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest",
)

model = job.run(my_dataset,
                replica_count=1,
                machine_type="n1-standard-4",
                accelerator_type='NVIDIA_TESLA_K80',
                accelerator_count=1)

In the code block above my_dataset is managed dataset created in the Dataset section above. The model variable is a managed Vertex AI model that can be deployed or exported.

AutoMLs

The Vertex AI SDK for Python supports AutoML tabular, image, text, video, and forecasting.

To train an AutoML tabular model:

dataset = aiplatform.TabularDataset('projects/my-project/location/us-central1/datasets/{DATASET_ID}')

job = aiplatform.AutoMLTabularTrainingJob(
  display_name="train-automl",
  optimization_prediction_type="regression",
  optimization_objective="minimize-rmse",
)

model = job.run(
    dataset=dataset,
    target_column="target_column_name",
    training_fraction_split=0.6,
    validation_fraction_split=0.2,
    test_fraction_split=0.2,
    budget_milli_node_hours=1000,
    model_display_name="my-automl-model",
    disable_early_stopping=False,
)

Models

To get a model:

model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')

To upload a model:

model = aiplatform.Model.upload(
    display_name='my-model',
    artifact_uri="gs://python/to/my/model/dir",
    serving_container_image_uri="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest",
)

To deploy a model:

endpoint = model.deploy(machine_type="n1-standard-4",
                        min_replica_count=1,
                        max_replica_count=5
                        machine_type='n1-standard-4',
                        accelerator_type='NVIDIA_TESLA_K80',
                        accelerator_count=1)

Please visit Importing models to Vertex AI for a detailed overview:

Model Evaluation

The Vertex AI SDK for Python currently supports getting model evaluation metrics for all AutoML models.

To list all model evaluations for a model:

model = aiplatform.Model('projects/my-project/locations/us-central1/models/{MODEL_ID}')

evaluations = model.list_model_evaluations()

To get the model evaluation resource for a given model:

model = aiplatform.Model('projects/my-project/locations/us-central1/models/{MODEL_ID}')

# returns the first evaluation with no arguments, you can also pass the evaluation ID
evaluation = model.get_model_evaluation()

eval_metrics = evaluation.metrics

You can also create a reference to your model evaluation directly by passing in the resource name of the model evaluation:

evaluation = aiplatform.ModelEvaluation(
  evaluation_name='projects/my-project/locations/us-central1/models/{MODEL_ID}/evaluations/{EVALUATION_ID}')

Alternatively, you can create a reference to your evaluation by passing in the model and evaluation IDs:

evaluation = aiplatform.ModelEvaluation(
  evaluation_name={EVALUATION_ID},
  model_id={MODEL_ID})

Batch Prediction

To create a batch prediction job:

model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')

batch_prediction_job = model.batch_predict(
  job_display_name='my-batch-prediction-job',
  instances_format='csv',
  machine_type='n1-standard-4',
  gcs_source=['gs://path/to/my/file.csv'],
  gcs_destination_prefix='gs://path/to/my/batch_prediction/results/',
  service_account='[email protected]'
)

You can also create a batch prediction job asynchronously by including the sync=False argument:

batch_prediction_job = model.batch_predict(..., sync=False)

# wait for resource to be created
batch_prediction_job.wait_for_resource_creation()

# get the state
batch_prediction_job.state

# block until job is complete
batch_prediction_job.wait()

Endpoints

To create an endpoint:

endpoint = aiplatform.Endpoint.create(display_name='my-endpoint')

To deploy a model to a created endpoint:

model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')

endpoint.deploy(model,
                min_replica_count=1,
                max_replica_count=5,
                machine_type='n1-standard-4',
                accelerator_type='NVIDIA_TESLA_K80',
                accelerator_count=1)

To get predictions from endpoints:

endpoint.predict(instances=[[6.7, 3.1, 4.7, 1.5], [4.6, 3.1, 1.5, 0.2]])

To undeploy models from an endpoint:

endpoint.undeploy_all()

To delete an endpoint:

endpoint.delete()

Pipelines

To create a Vertex AI Pipeline run and monitor until completion:

# Instantiate PipelineJob object
pl = PipelineJob(
    display_name="My first pipeline",

    # Whether or not to enable caching
    # True = always cache pipeline step result
    # False = never cache pipeline step result
    # None = defer to cache option for each pipeline component in the pipeline definition
    enable_caching=False,

    # Local or GCS path to a compiled pipeline definition
    template_path="pipeline.json",

    # Dictionary containing input parameters for your pipeline
    parameter_values=parameter_values,

    # GCS path to act as the pipeline root
    pipeline_root=pipeline_root,
)

# Execute pipeline in Vertex AI and monitor until completion
pl.run(
  # Email address of service account to use for the pipeline run
  # You must have iam.serviceAccounts.actAs permission on the service account to use it
  service_account=service_account,

  # Whether this function call should be synchronous (wait for pipeline run to finish before terminating)
  # or asynchronous (return immediately)
  sync=True
)

To create a Vertex AI Pipeline without monitoring until completion, use submit instead of run:

# Instantiate PipelineJob object
pl = PipelineJob(
    display_name="My first pipeline",

    # Whether or not to enable caching
    # True = always cache pipeline step result
    # False = never cache pipeline step result
    # None = defer to cache option for each pipeline component in the pipeline definition
    enable_caching=False,

    # Local or GCS path to a compiled pipeline definition
    template_path="pipeline.json",

    # Dictionary containing input parameters for your pipeline
    parameter_values=parameter_values,

    # GCS path to act as the pipeline root
    pipeline_root=pipeline_root,
)

# Submit the Pipeline to Vertex AI
pl.submit(
  # Email address of service account to use for the pipeline run
  # You must have iam.serviceAccounts.actAs permission on the service account to use it
  service_account=service_account,
)

Explainable AI: Get Metadata

To get metadata in dictionary format from TensorFlow 1 models:

from google.cloud.aiplatform.explain.metadata.tf.v1 import saved_model_metadata_builder

builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
          'gs://python/to/my/model/dir', tags=[tf.saved_model.tag_constants.SERVING]
      )
generated_md = builder.get_metadata()

To get metadata in dictionary format from TensorFlow 2 models:

from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder

builder = saved_model_metadata_builder.SavedModelMetadataBuilder('gs://python/to/my/model/dir')
generated_md = builder.get_metadata()

To use Explanation Metadata in endpoint deployment and model upload:

explanation_metadata = builder.get_metadata_protobuf()

# To deploy a model to an endpoint with explanation
model.deploy(..., explanation_metadata=explanation_metadata)

# To deploy a model to a created endpoint with explanation
endpoint.deploy(..., explanation_metadata=explanation_metadata)

# To upload a model with explanation
aiplatform.Model.upload(..., explanation_metadata=explanation_metadata)

Cloud Profiler

Cloud Profiler allows you to profile your remote Vertex AI Training jobs on demand and visualize the results in Vertex AI Tensorboard.

To start using the profiler with TensorFlow, update your training script to include the following:

from google.cloud.aiplatform.training_utils import cloud_profiler
...
cloud_profiler.init()

Next, run the job with with a Vertex AI TensorBoard instance. For full details on how to do this, visit https://cloud.google.com/vertex-ai/docs/experiments/tensorboard-overview

Finally, visit your TensorBoard in your Google Cloud Console, navigate to the "Profile" tab, and click the Capture Profile button. This will allow users to capture profiling statistics for the running jobs.

Next Steps

More Repositories

1

google-api-nodejs-client

Google's officially supported Node.js client library for accessing Google APIs. Support for authorization and authentication with OAuth 2.0, API Keys and JWT (Service Tokens) is included.
TypeScript
11,377
star
2

google-api-php-client

A PHP client library for accessing Google APIs
PHP
8,706
star
3

google-api-python-client

🐍 The official Python client library for Google's discovery based APIs.
Python
6,858
star
4

googleapis

Public interface definitions of Google APIs.
Starlark
6,797
star
5

release-please

generate release PRs based on the conventionalcommits.org spec
TypeScript
4,740
star
6

google-cloud-python

Google Cloud Client Library for Python
Python
4,324
star
7

google-api-go-client

Auto-generated Google APIs for Go.
Go
3,572
star
8

google-cloud-go

Google Cloud Client Libraries for Go.
Go
3,361
star
9

google-api-ruby-client

REST client for Google APIs
Ruby
2,679
star
10

google-cloud-node

Google Cloud Client Library for Node.js
TypeScript
2,654
star
11

google-cloud-java

Google Cloud Client Library for Java
Java
1,773
star
12

google-auth-library-nodejs

πŸ”‘ Google Auth Library for Node.js
TypeScript
1,549
star
13

google-http-java-client

Google HTTP Client Library for Java
Java
1,342
star
14

google-api-dotnet-client

Google APIs Client Library for .NET
C#
1,340
star
15

google-api-java-client

Google APIs Client Library for Java
Java
1,336
star
16

google-auth-library-php

Google Auth Library for PHP
PHP
1,323
star
17

google-cloud-ruby

Google Cloud Client Library for Ruby
Ruby
1,293
star
18

google-api-php-client-services

PHP
1,179
star
19

google-cloud-php

Google Cloud Client Library for PHP
PHP
1,085
star
20

elixir-google-api

Elixir client libraries for accessing Google APIs.
Elixir
1,011
star
21

google-cloud-dotnet

Google Cloud Client Libraries for .NET
C#
929
star
22

nodejs-storage

Node.js client for Google Cloud Storage: unified object storage for developers and enterprises, from live data serving to data analytics/ML to data archiving.
TypeScript
828
star
23

oauth2client

This is a Python library for accessing resources protected by OAuth 2.0.
Python
795
star
24

nodejs-dialogflow

Node.js client for Dialogflow: Design and integrate a conversational user interface into your applications and devices.
JavaScript
793
star
25

google-auth-library-python

Google Auth Python Library
Python
744
star
26

python-bigquery

Python
739
star
27

gaxios

An HTTP request client that provides an axios like interface over top of node-fetch. Super lightweight. Supports proxies and all sorts of other stuff.
TypeScript
692
star
28

nodejs-speech

This repository is deprecated. All of its content and history has been moved to googleapis/google-cloud-node.
684
star
29

repo-automation-bots

A collection of bots, based on probot, for performing common maintenance tasks across the open-source repos managed by Google on GitHub.
TypeScript
613
star
30

nodejs-firestore

Node.js client for Google Cloud Firestore: a NoSQL document database built for automatic scaling, high performance, and ease of application development.
JavaScript
612
star
31

google-oauth-java-client

Google OAuth Client Library for Java
Java
606
star
32

api-linter

A linter for APIs defined in protocol buffers.
Go
575
star
33

go-genproto

Generated code for Google Cloud client libraries.
Go
558
star
34

google-cloud-cpp

C++ Client Libraries for Google Cloud Services
C++
538
star
35

nodejs-pubsub

Node.js client for Google Cloud Pub/Sub: Ingest event streams from anywhere, at any scale, for simple, reliable, real-time stream analytics.
TypeScript
519
star
36

nodejs-translate

Node.js client for Google Cloud Translate: Dynamically translate text between thousands of language pairs.
JavaScript
514
star
37

nodejs-vision

Node.js client for Google Cloud Vision: Derive insight from images.
TypeScript
497
star
38

google-api-java-client-services

Generated Java code for Google APIs
497
star
39

python-bigquery-pandas

Google BigQuery connector for pandas
Python
447
star
40

python-bigquery-sqlalchemy

SQLAlchemy dialect for BigQuery
Python
426
star
41

nodejs-bigquery

Node.js client for Google Cloud BigQuery: A fast, economical and fully-managed enterprise data warehouse for large-scale data analytics.
TypeScript
420
star
42

google-auth-library-ruby

Google Auth Library for Ruby
Ruby
417
star
43

google-auth-library-java

Open source Auth client library for Java
Java
400
star
44

python-dialogflow

This library has moved to https://github.com/googleapis/google-cloud-python/tree/main/packages/google-cloud-dialogflow
397
star
45

python-pubsub

Python
390
star
46

signet

Signet is an OAuth 1.0 / OAuth 2.0 implementation.
Ruby
364
star
47

nodejs-text-to-speech

Node.js client for Google Cloud Text-to-Speech
JavaScript
355
star
48

python-speech

This library has moved to https://github.com/googleapis/google-cloud-python/tree/main/packages/google-cloud-speech
355
star
49

python-storage

Python
339
star
50

google-cloud-php-storage

PHP
322
star
51

google-cloud-php-core

PHP
319
star
52

gapic-generator

Tools for generating API client libraries from API Service Configuration descriptions.
Java
304
star
53

cloud-trace-nodejs

Node.js agent for Cloud Trace: automatically gather latency data about your application
TypeScript
272
star
54

gapic-generator-go

Generate Go API client libraries from Protocol Buffers.
Go
252
star
55

gax-php

Google API Extensions for PHP
PHP
232
star
56

api-common-protos

A standard library for use in specifying protocol buffer APIs.
Starlark
221
star
57

python-firestore

Python
214
star
58

google-cloud-datastore

Low-level, Protobuf-based Java and Python client libraries for Cloud Datastore. Check out google-cloud-java and google-cloud-python first!
Python
213
star
59

nodejs-datastore

Node.js client for Google Cloud Datastore: a highly-scalable NoSQL database for your web and mobile applications.
TypeScript
196
star
60

google-cloud-php-translate

PHP
194
star
61

python-bigquery-dataframes

BigQuery DataFrames
Python
186
star
62

google-cloud-rust

Rust
183
star
63

gapic-showcase

An API that demonstrates Generated API Client (GAPIC) features and common API patterns used by Google.
Go
174
star
64

github-repo-automation

A set of tools to automate multiple GitHub repository management.
TypeScript
174
star
65

google-cloud-php-firestore

PHP
170
star
66

cloud-debug-nodejs

Node.js agent for Google Cloud Debugger: investigate your code’s behavior in production
TypeScript
169
star
67

java-bigtable-hbase

Java libraries and HBase client extensions for accessing Google Cloud Bigtable
Java
165
star
68

gax-java

This library has moved to https://github.com/googleapis/sdk-platform-java/tree/main/gax-java.
162
star
69

python-vision

This library has moved to https://github.com/googleapis/google-cloud-python/tree/main/packages/google-cloud-vision
160
star
70

google-auth-library-python-oauthlib

Python
160
star
71

nodejs-logging

Node.js client for Stackdriver Logging: Store, search, analyze, monitor, and alert on log data and events from Google Cloud Platform and Amazon Web Services (AWS).
TypeScript
156
star
72

nodejs-tasks

Node.js client for Google Cloud Tasks: A fully managed service that allows you to manage the execution, dispatch and delivery of a large number of distributed tasks.
TypeScript
144
star
73

python-ndb

Python
144
star
74

google-cloudevents

Types for CloudEvents issued by Google
JavaScript
142
star
75

common-protos-php

PHP protocol buffer classes generated from https://github.com/googleapis/api-common-protos
PHP
132
star
76

artman

Artifact Manager, a build and packaging tool for Google API client libraries.
Python
132
star
77

proto-plus-python

Beautiful, idiomatic protocol buffers in Python
Python
132
star
78

googleapis.github.io

The GitHub pages site for the googleapis organization.
HTML
131
star
79

nodejs-language

Node.js client for Google Cloud Natural Language: Derive insights from unstructured text using Google machine learning.
JavaScript
131
star
80

java-pubsub

Java
126
star
81

python-analytics-data

Python
125
star
82

gapic-generator-python

Generate Python API client libraries from Protocol Buffers.
Python
122
star
83

google-auth-library-swift

Auth client library for Swift command-line tools and cloud services. Supports OAuth1, OAuth2, and Google Application Default Credentials.
Swift
122
star
84

python-api-core

Python
118
star
85

nodejs-compute

Node.js client for Google Compute Engine: Scalable, High-Performance Virtual Machines
JavaScript
115
star
86

python-texttospeech

Python
111
star
87

nodejs-spanner

Node.js client for Google Cloud Spanner: the world’s first fully managed relational database service to offer both strong consistency and horizontal scalability.
TypeScript
111
star
88

java-bigquery

Java
109
star
89

node-gtoken

πŸ”‘ Google Auth Service Account Tokens for Node.js
TypeScript
108
star
90

python-translate

This library has moved to https://github.com/googleapis/google-cloud-python/tree/main/packages/google-cloud-translate
108
star
91

java-storage

Java
104
star
92

go-sql-spanner

Google Cloud Spanner driver for Go's database/sql package.
Go
104
star
93

google-cloud-php-vision

PHP
103
star
94

gax-nodejs

Google API Extensions for Node.js
TypeScript
100
star
95

java-firestore

Java
100
star
96

nodejs-logging-winston

Node.js client integration between Stackdriver Logging and Winston.
TypeScript
100
star
97

python-logging

Python
99
star
98

nodejs-bigtable

Node.js client for Google Cloud Bigtable: Google's NoSQL Big Data database service.
TypeScript
91
star
99

nodejs-secret-manager

A cloud-hosted service that provides a secure and convenient tool for storing API keys, passwords, certificates, and other sensitive data.
JavaScript
89
star
100

synthtool

Python
87
star