• Stars
    star
    16
  • Rank 1,311,288 (Top 26 %)
  • Language
    Crystal
  • License
    MIT License
  • Created over 6 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Crystal implementation of "K-Dimensional Tree" and "N-Nearest Neighbors"

Kd::Tree

Crystal CI GitHub release Docs License

Crystal implementation of "K-Dimensional Tree" and "N-Nearest Neighbors" based on http://en.wikipedia.org/wiki/Kd-tree.

Installation

Add this to your application's shard.yml:

dependencies:
  kd_tree:
    github: geocrystal/kd_tree

Usage

require "kd_tree"

For example, construct a new tree where each point is represented as a two-dimensional array in the form [x, y], where x and y are numbers (such as Int32, Float64, etc).

kd = Kd::Tree(Array(Int32)).new(points)

Find the nearest point to [x, y]. Returns an array with one point:

kd.nearest([x, y])

Find the nearest k points to [x, y]. Returns an array of points:

kd.nearest([x, y], k)

Example

require "kd_tree"

points = [
  [2.0, 3.0],
  [5.0, 4.0],
  [4.0, 7.0],
  [7.0, 2.0],
  [8.0, 1.0],
  [9.0, 6.0],
]

kd = Kd::Tree(Array(Float64)).new(points)

kd.nearest([1.0, 1.0])
# => [[2.0, 3.0]])

kd_tree.nearest([1.0, 1.0], 2)
# => [[2.0, 3.0], [5.0, 4.0]])

Complex objects

Kd::Tree(T) can accept any object that responds to #size and #[](i : Int) methods.

class GeoLocation
  property name : String
  property longitude : Float64
  property latitude : Float64
  getter size = 2 # Assuming all GeoLocation objects are 2-dimensional

  def initialize(@name : String, @longitude : Float64, @latitude : Float64)
  end

  # Define an indexer to allow easy access by index for longitude and latitude
  def [](index : Int32) : Float64
    case index
    when 0 then @longitude
    when 1 then @latitude
    else        raise "Index out of bounds"
    end
  end
end

# Create an array of GeoLocation points
points = [
  GeoLocation.new("New York", -73.935242, 40.730610),
  GeoLocation.new("Los Angeles", -118.243683, 34.052235),
  GeoLocation.new("London", -0.127647, 51.507322),
  GeoLocation.new("Tokyo", 139.691711, 35.689487),
]

# Initialize the KD-tree with these points
kd_tree = Kd::Tree(GeoLocation).new(points)

# Find the nearest point to London
target = GeoLocation.new("Near London", -0.125740, 51.508530)
nearest_point = kd_tree.nearest(target, 1)
puts "Nearest to London: #{nearest_point.first.name} (longitude #{nearest_point.first.longitude}, latitude #{nearest_point.first.latitude})"
# Nearest to London: London (longitude -0.127647, latitude 51.507322)

Distance

For distance calculations, the squared Euclidean distance is used. However, you can easily monkey-patch the Kd::Tree#distance method to implement another algorithm, such as the Haversine formula, to calculate distances between two points given their latitudes and longitudes.

require "haversine"

module Kd
  class Tree(T)
    private def distance(m : T, n : T)
      # Calling `Haversine.distance` with 2 pairs of latitude/longitude coordinates.
      # Returns a distance in meters.
      Haversine.distance({m.latitude, m.longitude}, {n.latitude, n.longitude}).to_meters
    end
  end
end

points = [
  GeoLocation.new("New York", -73.935242, 40.730610),
  GeoLocation.new("Los Angeles", -118.243683, 34.052235),
  GeoLocation.new("London", -0.127647, 51.507322),
  GeoLocation.new("Tokyo", 139.691711, 35.689487),
]

kd_tree = Kd::Tree(GeoLocation).new(points)

# Find the nearest point to London
target = GeoLocation.new("Near London", -0.125740, 51.508530)
nearest_point = kd_tree.nearest(target, 1)
puts "Nearest to London: #{nearest_point.first.name} (longitude #{nearest_point.first.longitude}, latitude #{nearest_point.first.latitude})"
# Nearest to London: London (longitude -0.127647, latitude 51.507322)

Performance

Using a tree with 1 million points [x, y] of Float64 on my i7-8550U CPU @ 1.80GHz:

crystal run benchmark/benchmark.cr --release

Benchmarking KD-Tree with 1 million points
build(init): 3.43 seconds
                        user     system      total        real
nearest point   1   0.000021   0.000000   0.000021 (  0.000022)
nearest point   5   0.000014   0.000000   0.000014 (  0.000014)
nearest point  10   0.000011   0.000000   0.000011 (  0.000012)
nearest point  50   0.000061   0.000000   0.000061 (  0.000061)
nearest point 100   0.000083   0.000001   0.000084 (  0.000084)
nearest point 255   0.000238   0.000002   0.000240 (  0.000240)
nearest point 999   0.000981   0.000009   0.000990 (  0.000990)

Contributing

  1. Fork it (https://github.com/geocrystal/kd_tree/fork)
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create a new Pull Request

Contributors

  • mamantoha Anton Maminov - creator, maintainer