ML-Annotate
You can use ML-Annotate to label text data for machine learning purposes. ML-Annotate supports binary, multi-label and multi-class labeling.
Running locally
ML-Annotate requires Python 3.5 or later.
Create neccessary virtualenv for ML-Annotate and install all packages:
virtualenv --python python3 .virtualenv source .virtualenv/bin/activate pip install -r requirements.txt
Setup .env with all neccessary enviroment variables:
echo "source .virtualenv/bin/activate" >> .env echo "export FLASK_APP=annotator/app.py" >> .env echo "export DATABASE_URL=postgres://localhost/annotator" >> .env echo "export FLASK_DEBUG=1" >> .env source .env
Create database. This requires you to have PostgreSQL installed so you should have command line tools such as createdb:
.virtualenv/bin/flask resetdb .virtualenv/bin/flask add_user admin password
Normally you would want to import your data at this point. We have included a test script to make up some data for testing purposes:
.virtualenv/bin/flask import_fake_data
Run the app:
.virtualenv/bin/flask run
Adding data
ML-Annotate includes iPython shell for inserting data. Start by running:
flask shell
Then you will have access to the application shell. Here's an example on how to add data from Project Gutenberg:
import requests request = requests.get('https://www.gutenberg.org/files/1342/1342-0.txt') text_contents = max(request.text.split('***'), key=lambda x: len(x)) paragraphs = [ x.strip() for x in text_contents.replace('\r', '').split('\n\n') if x.strip() ] new_problem = Problem( name='Example', labels=[ProblemLabel(label='Example', order_index=1)], # supported types: binary, multi-label, multi-class # add more labels if using other labels. classification_type='binary' ) for i, paragraph in enumerate(paragraphs): db.session.add(Dataset( table_name='gutenberg.pride_and_prejudice_by_jane_austen', entity_id='paragraph%i' % i, problem=new_problem, free_text=paragraph )) db.session.commit()
Deploying to Heroku
This guide expects that you are deploying ML-Annotate to Heroku.
Create new Heroku application.
Set up the Heroku application Git remotes and push the application to production:
git remote add production [email protected]:APP_NAME_HERE.git git push production
Setup configuration:
heroku addons:create heroku-postgresql:hobby-dev --app APP_NAME_HERE heroku config:set SECRET_KEY=$(python3 -c 'import binascii, os; print(binascii.hexlify(os.urandom(24)).decode())') --app APP_NAME_HERE heroku config:set FLASK_APP=annotator/app.py --app APP_NAME_HERE heroku buildpacks:add --index 1 heroku/nodejs --app APP_NAME_HERE heroku buildpacks:add --index 2 https://github.com/philippkueng/heroku-buildpack-sassc.git --app APP_NAME_HERE heroku buildpacks:add --index 3 heroku/python --app APP_NAME_HERE
Then create the tables and create the user:
heroku run "flask createtables" --app APP_NAME_HERE heroku run "flask add_user admin password" --app APP_NAME_HERE
You should be able to access your instance of ML-Annotate now by going to YOUR_APP_NAME.herokuapp.com. Username is admin and the password is the one you set previously (yoursupersecretpassword).
Users
You can add admin users with the command:
flask add_user username password
If you need to add more specific permissions, you can use flask shell:
flask shell u = User(username='username', password='password') db.session.add(u) db.session.add(UserProblem(user=u, problem=Problem.query.get('PROBLEM_ID'))) db.session.commit()
Making modifications
It's very likely that this application does not fit your needs perfectly and you need to make some modifications. If you need to extend any models, you can do so and generate migration with the following command:
alembic revision --autogenerate -m 'Add column'
Then you can run the migration locally with alembic upgrade head. The migration is run automatically on Heroku when you deploy.