• Stars
    star
    158
  • Rank 237,131 (Top 5 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The official code for our ECCV22 oral paper: tracking objects as pixel-wise distributions.

[ECCV22 Oral] P3AFormer: Tracking Objects as Pixel-wise Distributions

This is the official code for our ECCV22 oral paper: tracking objects as pixel-wise distributions.

Authors: Zelin Zhao, Ze Wu, Yueqing Zhuang, Boxun Li, Jiaya Jia.

The proposed model diagram is:

P3AModel

The association scheme is:

Association

Installation

  1. Install PyTorch and torch vision. We tested on Pytorch==1.9.0+cu111, and torchvision==0.10.0+cu111. Other versions might work as well.

  2. Install detectron2 following the official guidance. We use detectron2 == 0.6.0. Other versions might work as well.

  3. Install other dependencies.

    pip install -r requirements.txt
    # install gdown to download datasets from Google.
    pip install gdown
    pip install --upgrade gdown
    cd models/ops
    bash make.sh  # build extensions if you don't have one, and CUDA is needed.

    We give a full list of our conda in export_requirements.txt.

Download datasets

  1. Download MOT17/MOT20 from the official website. Alternately, you can download it via the following commands.

    mkdir data
    cd data
    wget https://motchallenge.net/data/MOT17.zip
    wget https://motchallenge.net/data/MOT20.zip
    unzip MOT17.zip
    unzip MOT20.zip
    wget https://motchallenge.net/data/MOT15.zip # optional
    unzip MOT15.zip
  2. Download CityPersons from the official website. Alternately, you can download it via the following commands. When using the following commands, you need to have access to the google drive.

    gdown --no-cookies --id 1DgLHqEkQUOj63mCrS_0UGFEM9BG8sIZs
    gdown --no-cookies --id 1BH9Xz59UImIGUdYwUR-cnP1g7Ton_LcZ
    gdown --no-cookies --id 1q_OltirP68YFvRWgYkBHLEFSUayjkKYE
    gdown --no-cookies --id 1VSL0SFoQxPXnIdBamOZJzHrHJ1N2gsTW
    cat Citypersons.z01 Citypersons.z02 Citypersons.z03 Citypersons.zip > c.zip
    zip -FF Citypersons.zip --out c.zip
    unzip c.zip
    mv Citypersons Cityscapes

    You may need to retry the downloading if you find the "max retries" error. You may need to upgrade gdown if you meet the "permission" error. If you find the "End-of-centdir" error in unzip, you may need to redownload some of the downloaded files. If you meet the unzip error, you need to recover the zip file first.

  3. Download CrowdHuman from the official website. Alternately, you can download it via the following commands.

    gdown --no-cookies --id 134QOvaatwKdy0iIeNqA_p-xkAhkV4F8Y
    gdown --no-cookies --id 17evzPh7gc1JBNvnW1ENXLy5Kr4Q_Nnla
    gdown --no-cookies --id 1tdp0UCgxrqy1B6p8LkR-Iy0aIJ8l4fJW
    gdown --no-cookies --id 18jFI789CoHTppQ7vmRSFEdnGaSQZ4YzO
    gdown --no-cookies --id 1UUTea5mYqvlUObsC1Z8CFldHJAtLtMX3
    gdown --no-cookies --id 10WIRwu8ju8GRLuCkZ_vT6hnNxs5ptwoL
    # then unzip the downloaded files
  4. Download ETH from the official website. Alternately, you can download it via the following commands.

    gdown --no-cookies --id 19QyGOCqn8K_rc9TXJ8UwLSxCx17e0GoY
    unzip ETHZ.zip
  5. Then symbol link the downloaded data to the data folder under the project root. The downloaded data should be like:

    data
    |β€”β€”β€”β€”β€”β€”mot # this is MOT17
    | β””β€”β€”β€”β€”β€”β€”train
    | β””β€”β€”β€”β€”β€”β€”test
    β””β€”β€”β€”β€”β€”β€”crowdhuman
    | β””β€”β€”β€”β€”β€”β€”Crowdhuman_train
    | β””β€”β€”β€”β€”β€”β€”Crowdhuman_val
    | β””β€”β€”β€”β€”β€”β€”annotation_train.odgt
    | β””β€”β€”β€”β€”β€”β€”annotation_val.odgt
    β””β€”β€”β€”β€”β€”β€”MOT20
    | β””β€”β€”β€”β€”β€”β€”train
    | β””β€”β€”β€”β€”β€”β€”test
    β””β€”β€”β€”β€”β€”β€”Cityscapes
    | β””β€”β€”β€”β€”β€”β€”images
    | β””β€”β€”β€”β€”β€”β€”labels_with_ids
    β””β€”β€”β€”β€”β€”β€”ETHZ
    β””β€”β€”β€”β€”β€”β€”eth01
    β””β€”β€”β€”β€”β€”β€”...
    β””β€”β€”β€”β€”β€”β€”eth07

Preprocess Dataset

Convert downloaded data to the standard COCO format. The preprocess tools are inherited from ByteTrack. PROJECT_ROOT is the root path to this project.

```bash
cd ${PROJECT_ROOT}
bash preprocess/data_preprocess.sh
```

Training

  1. CoCo pretraining:
bash configs/standard/v100_mot17_coco.sh
  1. CrowdHuman pretraining:
bash configs/standard/v100_mot17_crowdhuman.sh
  1. MOT17 training:
bash configs/standard/v100_mot17_fine_tune_mot17.sh

Tracking

Get training performance scores (note this command needs only a 2080ti card to run):

bash configs/standard/v100_test_mot17.sh

Submit the results to MOT17 challenge website (note this command needs only a 2080ti card to run):

bash configs/standard/v100_submit_mot17.sh

Result and Models on MOT17

Method Detector Train Set Test Set Public Inf time (fps) HOTA MOTA IDF1 FP FN IDSw. Config Download
P3AFormer Our trained CrowdHuman + MOT17--train MOT17-test N - 55.9 69.3 68.9 19,275 151,200 2904 config model/submission

The Detectron2 version of the P3AFormer, some other parts and the whitles and bells are not organized well yet (on other dev branches, will be merged into main branch), however, you may find the raw codes at this Google drive link.

Code Structure

The code flow diagram is provided as follows: Association

TODO List

  • Jupyter notebook support for a quick demo.
  • YOLO-X style tracking objects as pixel-wise distributions.

Tips & QAs

  1. What if the CUDA OOM happens when killing the program via "ctrl + C"?

    Try this command to kill all programs using GPUs, do not run this if you have other useful processes using GPUs:

    lsof /dev/nvidia* | awk '{print $2}' | xargs -I {} kill {}
  2. How to develop?

    Using the debug scripts under the configs folder first and then run experiments on 2080Ti / V100.

Citation & Acknowledgements

If you find our code helpful, please cite our paper:

@misc{zhao2022tracking,
      title={Tracking Objects as Pixel-wise Distributions},
      author={Zelin Zhao and Ze Wu and Yueqing Zhuang and Boxun Li and Jiaya Jia},
      year={2022},
      eprint={2207.05518},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions, please contact me at: [email protected].

This code uses codes from MOTR, Transcenter-V1 and ByteTrack. Many thanks to their wonderful work. Consider citing them as well:

@inproceedings{zeng2021motr,
  title={MOTR: End-to-End Multiple-Object Tracking with TRansformer},
  author={Zeng, Fangao and Dong, Bin and Zhang, Yuang and Wang, Tiancai and Zhang, Xiangyu and Wei, Yichen},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2022}
}

@misc{xu2021transcenter,
      title={TransCenter: Transformers with Dense Representations for Multiple-Object Tracking},
      author={Yihong Xu and Yutong Ban and Guillaume Delorme and Chuang Gan and Daniela Rus and Xavier Alameda-Pineda},
      year={2021},
      eprint={2103.15145},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@article{zhang2022bytetrack,
  title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
  author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Weng, Fucheng and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2022}
}

More Repositories

1

MGM

Official repo for "Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models"
Python
3,111
star
2

LongLoRA

Code and documents of LongLoRA and LongAlpaca (ICLR 2024 Oral)
Python
2,563
star
3

LISA

Project Page for "LISA: Reasoning Segmentation via Large Language Model"
Python
1,680
star
4

VoxelNeXt

VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking (CVPR 2023)
Python
692
star
5

LLaMA-VID

LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models (ECCV 2024)
Python
656
star
6

DeepUPE

Underexposed Photo Enhancement Using Deep Illumination Estimation
Python
566
star
7

3D-Box-Segment-Anything

We extend Segment Anything to 3D perception by combining it with VoxelNeXt.
Jupyter Notebook
524
star
8

LLMGA

This project is the official implementation of 'LLMGA: Multimodal Large Language Model based Generation Assistant', ECCV2024
Python
424
star
9

ControlNeXt

Controllable video and image Generation, SVD, Animate Anyone, ControlNet, LoRA
Python
417
star
10

PanopticFCN

Fully Convolutional Networks for Panoptic Segmentation (CVPR2021 Oral)
Python
391
star
11

PointGroup

PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation
Python
376
star
12

3DSSD

3DSSD: Point-based 3D Single Stage Object Detector (CVPR 2020)
Python
375
star
13

Video-P2P

Video-P2P: Video Editing with Cross-attention Control
Python
365
star
14

FocalsConv

Focal Sparse Convolutional Networks for 3D Object Detection (CVPR 2022, Oral)
Python
364
star
15

Stratified-Transformer

Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)
Python
362
star
16

DSGN

DSGN: Deep Stereo Geometry Network for 3D Object Detection (CVPR 2020)
Python
324
star
17

PFENet

PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).
Python
307
star
18

SphereFormer

The official implementation for "Spherical Transformer for LiDAR-based 3D Recognition" (CVPR 2023).
Python
300
star
19

GridMask

Python
281
star
20

ReviewKD

Distilling Knowledge via Knowledge Review, CVPR 2021
Python
249
star
21

Parametric-Contrastive-Learning

Parametric Contrastive Learning (ICCV2021) & GPaCo (TPAMI 2023)
Python
237
star
22

Step-DPO

Implementation for "Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs"
Python
232
star
23

Simple-SR

Include MuCAN, LAPAR, etc.
Python
224
star
24

UVTR

Unifying Voxel-based Representation with Transformer for 3D Object Detection (NeurIPS 2022)
Python
224
star
25

Facelet_Bank

Facelet-Bank for Fast Portrait Manipulation (pytorch)
Python
208
star
26

SA-AutoAug

Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)
Python
196
star
27

LargeKernel3D

LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs (CVPR 2023)
Python
189
star
28

SNR-Aware-Low-Light-Enhance

This is the official implementation for the paper "SNR-aware low-light image enhancement" in CVPR2022
Python
160
star
29

MASA-SR

MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)
Python
158
star
30

Context-Aware-Consistency

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Python
155
star
31

SparseTransformer

A fast and memory-efficient libarary for sparse transformer with varying token numbers (e.g., 3D point cloud).
Python
153
star
32

spconv-plus

Python
152
star
33

EfficientNeRF

The official code for "Efficient Neural Radiance Fields" in CVPR2022.
Python
152
star
34

MiSLAS

Improving Calibration for Long-Tailed Recognition (CVPR2021)
Python
144
star
35

RIVAL

[NeurIPS 2023 Spotlight] Real-World Image Variation by Aligning Diffusion Inversion Chain
Python
143
star
36

MOOD

Official PyTorch implementation of MOOD series: (1) MOODv1: Rethinking Out-of-distributionDetection: Masked Image Modeling Is All You Need. (2) MOODv2: Masked Image Modeling for Out-of-Distribution Detection.
Python
133
star
37

outpainting_srn

Wide-Context Semantic Image Extrapolation, CVPR2019
Python
131
star
38

MSAD

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Python
127
star
39

DeepVision3D

DeepVision3D is an open source toolbox for point-cloud understanding.
Python
119
star
40

Ref-NPR

[CVPR 2023] Ref-NPR: Reference-Based Non-PhotoRealistic Radiance Fields
Python
119
star
41

VFIformer

Video Frame Interpolation with Transformer (CVPR2022)
Python
112
star
42

Prompt-Highlighter

[CVPR 2024] Prompt Highlighter: Interactive Control for Multi-Modal LLMs
Python
112
star
43

VFF

Voxel Field Fusion for 3D Object Detection (CVPR2022)
Python
95
star
44

SMR

Self-Supervised 3D Mesh Reconstruction from Single Images (CVPR2021)
Python
91
star
45

SCGAN

The implementation of 'Image synthesis via semantic composition', ICCV2021.
Python
81
star
46

Imbalanced-Learning

Imbalanced learning tool for imbalanced recognition and segmentation
Python
79
star
47

JigsawClustering

This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning
Python
78
star
48

AttenNorm

Attentive Normalization for Conditional Image Generation
Python
71
star
49

GFS-Seg

The official implementation of Generalized Few-shot Semantic Segmentation (CVPR 2022)
Python
63
star
50

Mask-Attention-Free-Transformer

Official Implementation for "Mask-Attention-Free Transformer for 3D Instance Segmentation"
Python
59
star
51

MoTCoder

This is the official code repository of MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks.
Python
58
star
52

SDSD

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Python
48
star
53

GroupContrast

[CVPR 2024] GroupContrast: Semantic-aware Self-supervised Representation Learning for 3D Understanding
42
star
54

ProposeReduce

Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)
Python
41
star
55

Robust-Semantic-Segmentation

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021οΌ‰
Python
40
star
56

Mr-Ben

This is the repo for our paper "Mr-Ben: A Comprehensive Meta-Reasoning Benchmark for Large Language Models"
Python
38
star
57

BAL

BAL: Balancing Diversity and Novelty for Active Learning - Official Pytorch Implementation
Python
38
star
58

TriVol

The official code of TriVol in CVPR-2023
Python
37
star
59

MR-GSM8K

Challenge LLMs to Reason About Reasoning: A Benchmark to Unveil Cognitive Depth in LLMs
Python
37
star
60

DecoupleNet

Official implementation for our ECCV 2022 paper "DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation"
Python
36
star
61

Dsig

Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)
Python
35
star
62

LBGAT

Learnable Boundary Guided Adversarial Training (ICCV2021)
Python
33
star
63

Q-LLM

This is the official repo of "QuickLLaMA: Query-aware Inference Acceleration for Large Language Models"
Python
31
star
64

AGSS-VOS

AGSS-VOS: Attention Guided Single-Shot Video Object Segmentation
Python
20
star
65

MAT

MAT: Mask-Aware Transformer for Large Hole Image Inpainting
Python
16
star
66

MSN

Memory Selection Network for Video Propagation (ECCV 2020)
Python
6
star
67

APD

Python
5
star
68

Point2Pix

The official code of Point2pix in CVPR-2023
2
star
69

TagCLIP

Python
2
star