d2l-ai/d2l-zh-pytorch-slides
This repo contains generated notebook slides. To open it locally, we suggest you to install the rise extension.
You can also preview them in nbviwer:
- chapter_preliminaries/ndarray.ipynb
- chapter_preliminaries/pandas.ipynb
- chapter_preliminaries/linear-algebra.ipynb
- chapter_preliminaries/calculus.ipynb
- chapter_preliminaries/autograd.ipynb
- chapter_preliminaries/lookup-api.ipynb
- chapter_linear-networks/linear-regression.ipynb
- chapter_linear-networks/linear-regression-scratch.ipynb
- chapter_linear-networks/linear-regression-concise.ipynb
- chapter_linear-networks/image-classification-dataset.ipynb
- chapter_linear-networks/softmax-regression-scratch.ipynb
- chapter_linear-networks/softmax-regression-concise.ipynb
- chapter_multilayer-perceptrons/mlp.ipynb
- chapter_multilayer-perceptrons/mlp-scratch.ipynb
- chapter_multilayer-perceptrons/mlp-concise.ipynb
- chapter_multilayer-perceptrons/underfit-overfit.ipynb
- chapter_multilayer-perceptrons/weight-decay.ipynb
- chapter_multilayer-perceptrons/dropout.ipynb
- chapter_multilayer-perceptrons/numerical-stability-and-init.ipynb
- chapter_multilayer-perceptrons/kaggle-house-price.ipynb
- chapter_deep-learning-computation/model-construction.ipynb
- chapter_deep-learning-computation/parameters.ipynb
- chapter_deep-learning-computation/custom-layer.ipynb
- chapter_deep-learning-computation/read-write.ipynb
- chapter_deep-learning-computation/use-gpu.ipynb
- chapter_convolutional-neural-networks/conv-layer.ipynb
- chapter_convolutional-neural-networks/padding-and-strides.ipynb
- chapter_convolutional-neural-networks/channels.ipynb
- chapter_convolutional-neural-networks/pooling.ipynb
- chapter_convolutional-neural-networks/lenet.ipynb
- chapter_convolutional-modern/alexnet.ipynb
- chapter_convolutional-modern/vgg.ipynb
- chapter_convolutional-modern/nin.ipynb
- chapter_convolutional-modern/googlenet.ipynb
- chapter_convolutional-modern/batch-norm.ipynb
- chapter_convolutional-modern/resnet.ipynb
- chapter_convolutional-modern/densenet.ipynb
- chapter_recurrent-neural-networks/sequence.ipynb
- chapter_recurrent-neural-networks/text-preprocessing.ipynb
- chapter_recurrent-neural-networks/language-models-and-dataset.ipynb
- chapter_recurrent-neural-networks/rnn-scratch.ipynb
- chapter_recurrent-neural-networks/rnn-concise.ipynb
- chapter_recurrent-modern/gru.ipynb
- chapter_recurrent-modern/lstm.ipynb
- chapter_recurrent-modern/deep-rnn.ipynb
- chapter_recurrent-modern/bi-rnn.ipynb
- chapter_recurrent-modern/machine-translation-and-dataset.ipynb
- chapter_recurrent-modern/encoder-decoder.ipynb
- chapter_recurrent-modern/seq2seq.ipynb
- chapter_attention-mechanisms/nadaraya-waston.ipynb
- chapter_attention-mechanisms/attention-scoring-functions.ipynb
- chapter_attention-mechanisms/bahdanau-attention.ipynb
- chapter_attention-mechanisms/multihead-attention.ipynb
- chapter_attention-mechanisms/self-attention-and-positional-encoding.ipynb
- chapter_attention-mechanisms/transformer.ipynb
- chapter_computational-performance/multiple-gpus.ipynb
- chapter_computational-performance/multiple-gpus-concise.ipynb
- chapter_computer-vision/image-augmentation.ipynb
- chapter_computer-vision/fine-tuning.ipynb
- chapter_computer-vision/bounding-box.ipynb
- chapter_computer-vision/anchor.ipynb
- chapter_computer-vision/multiscale-object-detection.ipynb
- chapter_computer-vision/object-detection-dataset.ipynb
- chapter_computer-vision/ssd.ipynb
- chapter_computer-vision/semantic-segmentation-and-dataset.ipynb
- chapter_computer-vision/transposed-conv.ipynb
- chapter_computer-vision/fcn.ipynb
- chapter_computer-vision/neural-style.ipynb
- chapter_computer-vision/kaggle-cifar10.ipynb
- chapter_computer-vision/kaggle-dog.ipynb
- chapter_natural-language-processing-applications/natural-language-inference-and-dataset.ipynb
- chapter_natural-language-processing-applications/natural-language-inference-bert.ipynb