• Stars
    star
    290
  • Rank 142,981 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch

PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ResNet-50/101 on ImageNet

Architecture LR decay strategy Parameters GFLOPs Top-1 / Top-5 Accuracy (%)
ResNet-50 step (90 epochs) 25.557M 4.089 76.010 / 92.834
ResNet-50 cosine (120 epochs) 25.557M 4.089 77.150 / 93.468
Oct-ResNet-50 (alpha=0.5) cosine (120 epochs) 25.557M 2.367 77.640 / 93.662
ResNet-101 cosine (120 epochs) 44.549M 7.801 78.898 / 94.304
Oct-ResNet-101 (alpha=0.5) cosine (120 epochs) 44.549M 3.991 78.794 / 94.330
ResNet-152 cosine (120 epochs) 60.193M 11.514 79.234 / 94.556
Oct-ResNet-152 (alpha=0.5) cosine (120 epochs) 60.193M 5.615 79.258 / 94.480

MobileNet V1 on ImageNet

Architecture LR decay strategy Parameters FLOPs Top-1 / Top-5 Accuracy (%)
MobileNetV1 cosine (150 epochs) 4.232M 568.7M 72.238 / 90.536
Oct-MobileNetV1 cosine (150 epochs) 4.232M 318.2M 71.254 / 89.728

Acknowledgement

Official MXNet implmentation by @cypw

Citation

@InProceedings{Chen_2019_ICCV,
author = {Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},
title = {Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

More Repositories

1

involution

[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator
Python
1,307
star
2

mobilenetv2.pytorch

72.8% MobileNetV2 1.0 model on ImageNet and a spectrum of pre-trained MobileNetV2 models
Python
663
star
3

mobilenetv3.pytorch

74.3% MobileNetV3-Large and 67.2% MobileNetV3-Small model on ImageNet
Python
514
star
4

efficientnetv2.pytorch

PyTorch implementation of EfficientNetV2 family
Python
450
star
5

PSConv

[ECCV 2020] PSConv: Squeezing Feature Pyramid into One Compact Poly-Scale Convolutional Layer
Python
175
star
6

face-attribute-prediction

Face Attribute Prediction on CelebA benchmark with PyTorch Implementation
Python
139
star
7

HBONet

[ICCV 2019] Harmonious Bottleneck on Two Orthogonal Dimensions, surpassing MobileNetV2
Python
103
star
8

ghostnet.pytorch

73.6% GhostNet 1.0x pre-trained model on ImageNet
Python
88
star
9

DHM

[CVPR 2020] Dynamic Hierarchical Mimicking Towards Consistent Optimization Objectives
Python
84
star
10

dgconv.pytorch

PyTorch implementation of Dynamic Grouping Convolution and Groupable ConvNet with pre-trained G-ResNeXt models
Python
69
star
11

regnet.pytorch

PyTorch-style and human-readable RegNet with a spectrum of pre-trained models
Python
68
star
12

lambda.pytorch

PyTorch implementation of Lambda Network and pretrained Lambda-ResNet
Python
54
star
13

SAN

[ECCV 2020] Scale Adaptive Network: Learning to Learn Parameterized Classification Networks for Scalable Input Images
Python
43
star
14

mlp-mixer.pytorch

PyTorch implementation of MLP-Mixer
Python
36
star
15

condconv.pytorch

PyTorch implementation of CondConv and MobileNetV2 model
Python
34
star
16

mobilenext.pytorch

Rethinking Bottleneck Structure for Efficient Mobile Network Design
Python
13
star
17

dot-product-attention

A collection of self-attention modules and pre-trained backbones
Python
13
star
18

mobilenetv4.pytorch

PyTorch implementation of MobileNetV4 family
Python
12
star
19

efficientnet-lite.pytorch

PyTorch implementation of EfficientNet-lite and a spectrum of pre-trained models on ImageNet
Python
10
star
20

deeplearning.ai-CNN

Implementation of course Convolutional Neural Networks created by deeplearning.ai on Coursera
Jupyter Notebook
3
star