• Stars
    star
    307
  • Rank 136,109 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created about 6 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tensorflow implementation of Amazon DeepAR

deepar

Build Status

Tensorflow implementation of Amazon DeepAR

Example usage:

Fit a univariate time series:

%load_ext autoreload
%autoreload 2

from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

from deepar.dataset.time_series import MockTs
from deepar.model.lstm import DeepAR

ts = MockTs(dimensions=1)  # you can change this for multivariate time-series!
dp_model = DeepAR(ts, epochs=50)
dp_model.instantiate_and_fit()

Plot results with uncertainty bands:

%matplotlib inline
from numpy.random import normal
import tqdm
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np

batch = ts.next_batch(1, ts.n_steps)

ress = []
for i in tqdm.tqdm(range(300)):
    ress.append(np.expand_dims(
        dp_model.get_sample_prediction(
            batch[0]
        ), axis=0,
    ))

res_np = np.concatenate(ress, axis=0)
fig = plt.figure(figsize=(12, 10))

for dim in range(ts.dimensions):
    ax = fig.add_subplot(ts.dimensions, 1, dim+1)
    res_df = pd.DataFrame(res_np[:, :, 0]).T
    tot_res = res_df

    ax.plot(batch[1].reshape((ts.n_steps, ts.dimensions))[:, dim], linewidth=6)
    tot_res['mu'] = tot_res.apply(lambda x: np.mean(x), axis=1)
    tot_res['upper'] = tot_res.apply(lambda x: np.mean(x) + np.std(x), axis=1)
    tot_res['lower'] = tot_res.apply(lambda x: np.mean(x) - np.std(x), axis=1)
    tot_res['two_upper'] = tot_res.apply(lambda x: np.mean(x) + 2*np.std(x), axis=1)
    tot_res['two_lower'] = tot_res.apply(lambda x: np.mean(x) - 2*np.std(x), axis=1)

    ax.plot(tot_res.mu, 'bo')
    ax.plot(tot_res.mu, linewidth=2)
    ax.fill_between(x = tot_res.index, y1=tot_res.lower, y2=tot_res.upper, alpha=0.5)
    ax.fill_between(x = tot_res.index, y1=tot_res.two_lower, y2=tot_res.two_upper, alpha=0.5)
    fig.suptitle('Prediction uncertainty')

Image of gaussian