Stable Baselines Jax (SB3 + Jax = SBX)
Proof of concept version of Stable-Baselines3 in Jax.
Implemented algorithms:
- Soft Actor-Critic (SAC) and SAC-N
- Truncated Quantile Critics (TQC)
- Dropout Q-Functions for Doubly Efficient Reinforcement Learning (DroQ)
- Proximal Policy Optimization (PPO)
- Deep Q Network (DQN)
Install using pip
For the latest master version:
pip install git+https://github.com/araffin/sbx
or:
pip install sbx-rl
Example
import gymnasium as gym
from sbx import TQC, DroQ, SAC, PPO, DQN
env = gym.make("Pendulum-v1")
model = TQC("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10_000, progress_bar=True)
vec_env = model.get_env()
obs = vec_env.reset()
for i in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = vec_env.step(action)
vec_env.render()
vec_env.close()
Citing the Project
To cite this repository in publications:
@article{stable-baselines3,
author = {Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
title = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {268},
pages = {1-8},
url = {http://jmlr.org/papers/v22/20-1364.html}
}
Maintainers
Stable-Baselines3 is currently maintained by Ashley Hill (aka @hill-a), Antonin Raffin (aka @araffin), Maximilian Ernestus (aka @ernestum), Adam Gleave (@AdamGleave), Anssi Kanervisto (@Miffyli) and Quentin Gallouédec (@qgallouedec).
Important Note: We do not do technical support, nor consulting and don't answer personal questions per email. Please post your question on the RL Discord, Reddit or Stack Overflow in that case.
How To Contribute
To any interested in making the baselines better, there is still some documentation that needs to be done. If you want to contribute, please read CONTRIBUTING.md guide first.