• Stars
    star
    167
  • Rank 226,635 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 2 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers

Website โ€ข STVG Demo โ€ข Paper

PWC PWC PWC

Teaser TubeDETR is a new architecture for spatio-temporal video grounding that consists of an efficient video and text encoder that models spatial multi-modal interactions over sparsely sampled frames and a space-time decoder that jointly performs spatio-temporal localization.

This repository provides the code for our paper. This includes:

  • Software setup, data downloading and preprocessing instructions for the VidSTG, HC-STVG1 and HC-STVG2.0 datasets
  • Training scripts and pretrained checkpoints
  • Evaluation scripts and demo

Setup

Download FFMPEG and add it to the PATH environment variable. The code was tested with version ffmpeg-4.2.2-amd64-static. Then create a conda environment and install the requirements with the following commands:

conda create -n tubedetr_env python=3.8
conda activate tubedetr_env
pip install -r requirements.txt

Data Downloading

Setup the paths where you are going to download videos and annotations in the config json files.

VidSTG: Download VidOR videos and annotations from the VidOR dataset providers. Then download the VidSTG annotations from the VidSTG dataset providers. The vidstg_vid_path folder should contain a folder video containing the unzipped video folders. The vidstg_ann_path folder should contain both VidOR and VidSTG annotations.

HC-STVG: Download HC-STVG1 and HC-STVG2.0 videos and annotations from the HC-STVG dataset providers. The hcstvg_vid_path folder should contain a folder video containing the unzipped video folders. The hcstvg_ann_path folder should contain both HC-STVG1 and HC-STVG2.0 annotations.

Data Preprocessing

To preprocess annotation files, run:

python preproc/preproc_vidstg.py
python preproc/preproc_hcstvg.py
python preproc/preproc_hcstvgv2.py

Training

Download pretrained RoBERTa tokenizer and model weights in the TRANSFORMERS_CACHE folder. Download pretrained ResNet-101 model weights in the TORCH_HOME folder. Download MDETR pretrained model weights with ResNet-101 backbone in the current folder.

VidSTG To train on VidSTG, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=vidstg --combine_datasets_val=vidstg \
--dataset_config config/vidstg.json --output-dir=OUTPUT_DIR

HC-STVG2.0 To train on HC-STVG2.0, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--v2 --dataset_config config/hcstvg.json --epochs=20 --output-dir=OUTPUT_DIR

HC-STVG1 To train on HC-STVG1, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--dataset_config config/hcstvg.json --epochs=40 --eval_skip=40 --output-dir=OUTPUT_DIR

Baselines

  • To remove time encoding, add --no_time_embed.
  • To remove the temporal self-attention in the space-time decoder, add --no_tsa.
  • To train from ImageNet initialization, pass an empty string to the argument --load and add --sted_loss_coef=5 --lr=2e-5 --text_encoder_lr=2e-5 --epochs=20 --lr_drop=20 for VidSTG or --epochs=70 --lr_drop=70 --text_encoder_lr=1e-5 for HC-STVG1.
  • To train with a randomly initalized temporal self-attention, add --rd_init_tsa.
  • To train with a different spatial resolution (e.g. res=352) or temporal stride (e.g. k=4), add --resolution=224 or --stride=5.
  • To train with the slow-only variant, add --no_fast.
  • To train with alternative designs for the fast branch, add --fast=VARIANT.

Available Checkpoints

Training data parameters url VidSTG test declarative sentences (vIoU/[email protected]/[email protected]) VidSTG test interrogative sentences (vIoU/[email protected]/[email protected]) HC-STVG1 test (vIoU/[email protected]/[email protected]) HC-STVG2.0 val (vIoU/[email protected]/[email protected]) size
MDETR init + VidSTG k=4 res=352 Drive 30.4/42.5/28.2 25.7/35.7/23.2 3.0GB
MDETR init + VidSTG k=2 res=224 Drive 29.0/40.4/78.3 24.6/33.6/21.6 3.0GB
ImageNet init + VidSTG k=4 res=352 Drive 22.0/29.7/18.1 19.6/26.1/14.9 3.0GB
MDETR init + HC-STVG2.0 k=4 res=352 Drive 36.4/58.8/30.6 3.0GB
MDETR init + HC-STVG2.0 k=2 res=224 Drive 35.8/56.7/29.6 3.0GB
MDETR init + HC-STVG1 k=4 res=352 Drive 32.4/49.8/23.5 3.0GB
ImageNet init + HC-STVG1 k=4 res=352 Drive 21.2/31.6/12.2 3.0GB

Evaluation

For evaluation only, simply run the same commands as for training with --resume=CHECKPOINT --eval. For this to be done on the test set, add --test (in this case predictions and attention weights are also saved).

Spatio-Temporal Video Grounding Demo

You can also use a pretrained model to infer a spatio-temporal tube on a video of your choice (VIDEO_PATH with potential START and END timestamps) given the natural language query of your choice (CAPTION) with the following command:

python demo_stvg.py --load=CHECKPOINT --caption_example CAPTION --video_example VIDEO_PATH --start_example=START --end_example=END --output-dir OUTPUT_PATH

Note that we also host an online demo at this link, the code of which is available at server_stvg.py and server_stvg.html.

Acknowledgements

This codebase is built on the MDETR codebase. The code for video spatial data augmentation is inspired by torch_videovision.

Citation

If you found this work useful, consider giving this repository a star and citing our paper as followed:

@inproceedings{yang2022tubedetr,
author    = {Yang, Antoine and Miech, Antoine and Sivic, Josef and Laptev, Ivan and Schmid, Cordelia},
title     = {TubeDETR: Spatio-Temporal Video Grounding With Transformers},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year      = {2022},
pages     = {16442-16453}}