• Stars
    star
    251
  • Rank 161,862 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated about 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Learning What and Where to Transfer (ICML 2019)

Learning What and Where to Transfer (ICML 2019)

Learning What and Where to Transfer (ICML 2019) https://arxiv.org/abs/1905.05901

Requirements

  • python>=3.6
  • pytorch>=1.0
  • torchvision
  • cuda>=9.0

Note. The reported results in our paper were obtained in the old-version pytorch (pytorch=1.0, cuda=9.0). We recently executed again the experiment commands as described below using the recent version (pytorch=1.6.0, torchvision=0.7.0, cuda=10.1), and obtained similar results as reported in the paper.

Prepare Datasets

You can download CUB-200 and Stanford Dogs datasets

You need to run the below pre-processing script for DataLoader.

python cub200.py /data/CUB_200_2011
python dog.py /data/dog

Train L2T-ww

You can train L2T-ww models with the same settings in our paper.

python train_l2t_ww.py --dataset cub200 --datasplit cub200 --dataroot /data/CUB_200_2011
python train_l2t_ww.py --dataset dog --datasplit dog --dataroot /data/dog
python train_l2t_ww.py --dataset cifar100 --datasplit cifar100 --dataroot /data/ --experiment logs/cifar100_0/ --source-path logs --source-model resnet32 --source-domain tinyimagenet-200 --target-model vgg9_bn --pairs 4-0,4-1,4-2,4-3,4-4,9-0,9-1,9-2,9-3,9-4,14-0,14-1,14-2,14-3,14-4 --batchSize 128
python train_l2t_ww.py --dataset stl10 --datasplit stl10 --dataroot /data/ --experiment logs/stl10_0/ --source-path logs --source-model resnet32 --source-domain tinyimagenet-200 --target-model vgg9_bn --pairs 4-0,4-1,4-2,4-3,4-4,9-0,9-1,9-2,9-3,9-4,14-0,14-1,14-2,14-3,14-4 --batchSize 128

More Repositories

1

CSI

CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances (NeurIPS 2020)
Python
273
star
2

Confident_classifier

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018
Python
178
star
3

cs-kd

Regularizing Class-wise Predictions via Self-knowledge Distillation (CVPR 2020)
Python
107
star
4

M2m

Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)
Python
92
star
5

LfF

Learning from Failure: Training Debiased Classifier from Biased Classifier (NeurIPS 2020)
Python
89
star
6

ifseg

IFSeg: Image-free Semantic Segmentation via Vision-Language Model (CVPR 2023)
Python
80
star
7

SelfPatch

Python
57
star
8

consistency-adversarial

Consistency Regularization for Adversarial Robustness (AAAI 2022)
Python
52
star
9

PsCo

Unsupervised Meta-Learning via Few-shot Pseudo-supervised Contrastive Learning (ICLR 2023)
Python
52
star
10

MASKER

MASKER: Masked Keyword Regularization for Reliable Text Classification (AAAI 2021)
Python
51
star
11

object-aware-contrastive

Object-aware Contrastive Learning for Debiased Scene Representation (NeurIPS 2021)
Python
45
star
12

s-clip

S-CLIP: Semi-supervised Vision-Language Pre-training using Few Specialist Captions
Python
43
star
13

lookahead_pruning

Lookahead: A Far-sighted Alternative of Magnitude-based Pruning (ICLR 2020)
Python
33
star
14

temporal-selfsupervision

Python
31
star
15

BAR

The repository for the official Biased Action Recognition (BAR) dataset for the paper Learning from Failure: Training Debiased Classifier from Biased Classifier (NeurIPS 2020) by Junhyun Nam et al.
30
star
16

HOMER

Official implementation of Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs (ICLR 2024).
Python
27
star
17

oreo

Python
23
star
18

b2t

Bias-to-Text: Debiasing Unknown Visual Biases through Language Interpretation
Python
23
star
19

OpenCoS

Python
15
star
20

MetaMAE

Modality-Agnostic Self-Supervised Learning with Meta-Learned Masked Auto-Encoder (NeurIPS 2023)
Python
10
star
21

SURF

Python
8
star
22

lime-cam-pytorch

Pytorch implemenation of LIME-CAM
Python
7
star
23

OAMixer

OAMixer: Object-aware Mixing Layer for Vision Transformers (CVPRW 2022)
Python
6
star
24

smoothing-catrs

Code for the paper "Confidence-aware Training of Smoothed Classifiers for Certified Robustness" (AAAI 2023)
Python
6
star
25

ml-papers-classification

Python
1
star