There are no reviews yet. Be the first to send feedback to the community and the maintainers!
Adaptive-Particle-Swarm-Optimization
Zhi-Hui Zhan, Jun Zhang, Yun Li and H. Chung, "Adaptive Particle Swarm Optimization", IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362-1381, 2009.Multi-Strategy-Ensemble-Whale-Optimization-Algorithm
X. Yuan, Z. Miao, Z. Liu, Z. Yan and F. Zhou, "Multi-Strategy Ensemble Whale Optimization Algorithm and Its Application to Analog Circuits Intelligent Fault Diagnosis", Applied Sciences, vol. 10, no. 11, p. 3667, 2020.Hybrid-algorithm-of-particle-swarm-optimization-and-Grey-Wolf-optimizer
N. Singh and S. Singh, "Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Improving Convergence Performance", Journal of Applied Mathematics, vol. 2017, pp. 1-15, 2017.Elite-Opposition-Based-Golden-Sine-Whale-Optimization-Algorithm
肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177-2186.Metaheuristic-benchmark
整理35篇期刊所使用的benchmark function(2007-2021),並且統計各benchmark function的出現次數Binary-Hybrid-algorithm-of-particle-swarm-optimization-and-Grey-Wolf-optimizer
Al-Tashi, Q., Abdulkadir, S. J., Rais, H. M., Mirjalili, S., & Alhussian, H. (2019). Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection. IEEE Access, 1–1. doi:10.1109/access.2019.2906757Binary-Whale-Optimization-Algorithm
Tawhid, M.A., Ibrahim, A.M. Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm. Int. J. Mach. Learn. & Cyber. 11, 573–602 (2020). https://doi.org/10.1007/s13042-019-00996-5Levy-fight-trajectory-based-whale-optimization-algorithm
Y. Ling, Y. Zhou and Q. Luo, "Lévy Flight Trajectory-Based Whale Optimization Algorithm for Global Optimization", IEEE Access, vol. 5, pp. 6168-6186, 2017.Grey-Wolf-Optimizer-algorithm-with-a-Two-phase-Mutation
Abdel-Basset, M., El-Shahat, D., El-henawy, I., de Albuquerque, V. H. C., & Mirjalili, S. (2019). A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Systems with Applications, 112824. doi:10.1016/j.eswa.2019.112824improved-WOA-based-on-nonlinear-adaptive-weight-and-golden-sine-operator
J. Zhang and J. Wang, "Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator", IEEE Access, vol. 8, pp. 77013-77048, 2020.Non-Dominated-Sorting-Whale-Optimization-Algorithm
A-Multiobjective-Genetic-Algorithm-for-Assembly-Line-Balancing-Problem-with-Worker-Allocation
A Multiobjective Genetic Algorithm for Assembly Line Balancing Problem with Worker Allocationgenetic-algorithm-for-the-flexible-job-shop-scheduling-problem
Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563–3573. doi:10.1016/j.eswa.2010.08.145binary-Gray-Wolf-Optimization
Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381. doi:10.1016/j.neucom.2015.06.083Enhanced-Whale-Optimization-Algorithm2
A. Kaveh and M. Ghazaan, "Enhanced whale optimization algorithm for sizing optimization of skeletal structures", Mechanics Based Design of Structures and Machines, vol. 45, no. 3, pp. 345-362, 2016.Artificial-Gorilla-Troops-Optimizer
B. Abdollahzadeh, F. Soleimanian Gharehchopogh and S. Mirjalili, "Artificial gorilla troops optimizer: A new nature‐inspired metaheuristic algorithm for global optimization problems", International Journal of Intelligent Systems, vol. 36, no. 10, pp. 5887-5958, 2021.Enhanced-Whale-Optimization-Algorithm
M. Qais, H. Hasanien and S. Alghuwainem, "Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators", Applied Soft Computing, vol. 86, p. 105937, 2020.S-shaped-Binary-Whale-Optimization-Algorithm
Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2018). S-shaped Binary Whale Optimization Algorithm for Feature Selection. Advances in Intelligent Systems and Computing, 79–87. doi:10.1007/978-981-10-8863-6_9Variable-Neighborhood-Search
T. Jiang, "A Hybrid Grey Wolf Optimization for Job Shop Scheduling Problem", International Journal of Computational Intelligence and Applications, vol. 17, no. 03, p. 1850016, 2018.Multi-objective-Optimization-Problems-and-Algorithms
Python versionGrey-Wolf-Optimizer
S. Mirjalili, S. Mirjalili and A. Lewis, "Grey Wolf Optimizer", Advances in Engineering Software, vol. 69, pp. 46-61, 2014.Particle-Swarm-Optimization
F. Marini and B. Walczak, "Particle swarm optimization (PSO). A tutorial", Chemometrics and Intelligent Laboratory Systems, vol. 149, pp. 153-165, 2015.Multi-Strategy-Enhanced-Whale-Optimization-Algorithm
Z. Huang and W. Li, "Novel Multi-Strategy Enhanced Whale Optimization Algorithm", 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), 2020.Python-Data
Whale-optimization-algorithm-with-a-modified-mutualism-phase
S. Chakraborty, A. Kumar Saha, S. Sharma, S. Mirjalili and R. Chakraborty, "A novel enhanced whale optimization algorithm for global optimization", Computers & Industrial Engineering, vol. 153, p. 107086, 2021make_scorer-demo
sklearn's make_scorer demoThe-Grey-Wolf-Optimizer
The Grey Wolf Optimizerrandom-key
for metaheuristicLevy-flight
https://www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_AlgorithmsIntroduction-to-Genetic-Algorithms-Theory-and-Applications
Introduction to Genetic Algorithms: Theory and ApplicationsOptimization-problems-and-algorithms
Optimization problems and algorithmsChaotic-map
The-Whale-Optimization-Algorithm
S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm", Advances in Engineering Software, vol. 95, pp. 51-67, 2016.BPSOGWO-with-GA
Hill-Climbing-and-Simulated-Annealing-AI-Algorithms
Hill Climbing and Simulated Annealing AI Algorithmsidentical-parallel-machine-scheduling-using-genetic-algorithm
Tabu-Search
陳士杰, 禁制搜尋法基礎(Foundations of Tabu Search), 國立聯合大學Simulated-Annealing
陳士杰, 模擬退火法基礎(Foundations of Simulated Annealing), 國立聯合大學Data-Scientist-Tokyo
東京大學資料科學家養成全書 閱讀心得Hill-Climbing
Love Open Source and this site? Check out how you can help us