• Stars
    star
    117
  • Rank 301,828 (Top 6 %)
  • Language
    Python
  • Created almost 3 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[WWW'22] Official PyTorch implementation for "Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning".

NCL (Neighborhood-enriched Contrastive Learning)

This is the official PyTorch implementation for the paper:

Zihan Lin*, Changxin Tian*, Yupeng Hou* Wayne Xin Zhao. Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning. WWW 2022.

Overview

We propose a contrastive learning paradigm, named Neighborhood-enriched Contrastive Learning (NCL), to explicitly capture potential node relatedness into contrastive learning for graph collaborative filtering.

Requirements

recbole==1.0.0
python==3.7.7
pytorch==1.7.1
faiss-gpu==1.7.1
cudatoolkit==10.1

Quick Start

python main.py --dataset ml-1m

You can replace ml-1m to yelp, amazon-books, gowalla-merged or alibaba to reproduce the results reported in our paper.

Datasets

For alibaba, you can download alibaba.zip from Google Drive. Then,

mkdir dataset
mv alibaba.zip dataset
unzip alibaba.zip
python main.py --dataset alibaba

For others, they will be downloaded automatically via RecBole once you run the main program. Take yelp for example,

python main.py --dataset yelp

Customized datasets

To run NCL on customized datasets, please following #1 (comment).

Acknowledgement

The implementation is based on the open-source recommendation library RecBole.

Please cite the following papers as the references if you use our codes or the processed datasets.

@inproceedings{lin2022ncl,
    author={Zihan Lin and
            Changxin Tian and
            Yupeng Hou and
            Wayne Xin Zhao},
    title={Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning},
    booktitle={{WWW}},
    year={2022},
}

@inproceedings{zhao2021recbole,
  title={Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms},
  author={Wayne Xin Zhao and Shanlei Mu and Yupeng Hou and Zihan Lin and Kaiyuan Li and Yushuo Chen and Yujie Lu and Hui Wang and Changxin Tian and Xingyu Pan and Yingqian Min and Zhichao Feng and Xinyan Fan and Xu Chen and Pengfei Wang and Wendi Ji and Yaliang Li and Xiaoling Wang and Ji-Rong Wen},
  booktitle={{CIKM}},
  year={2021}
}

More Repositories

1

LLMSurvey

The official GitHub page for the survey paper "A Survey of Large Language Models".
Python
10,176
star
2

RecBole

A unified, comprehensive and efficient recommendation library
Python
3,387
star
3

TextBox

TextBox 2.0 is a text generation library with pre-trained language models
Python
1,073
star
4

Awesome-RSPapers

Recommender System Papers
937
star
5

RecSysDatasets

This is a repository of public data sources for Recommender Systems (RS).
Python
808
star
6

LLMBox

A comprehensive library for implementing LLMs, including a unified training pipeline and comprehensive model evaluation.
Python
599
star
7

CRSLab

CRSLab is an open-source toolkit for building Conversational Recommender System (CRS).
Python
496
star
8

HaluEval

This is the repository of HaluEval, a large-scale hallucination evaluation benchmark for Large Language Models.
Python
392
star
9

Top-conference-paper-list

A collection of classified and organized top conference paper list.
360
star
10

LLMRank

[ECIR'24] Implementation of "Large Language Models are Zero-Shot Rankers for Recommender Systems"
Python
229
star
11

DenseRetrieval

200
star
12

Negative-Sampling-Paper

This repository collects 100 papers related to negative sampling methods.
185
star
13

RecBole2.0

An up-to-date, comprehensive and flexible recommendation library
180
star
14

RecBole-GNN

Efficient and extensible GNNs enhanced recommender library based on RecBole.
Python
170
star
15

UniSRec

[KDD'22] Official PyTorch implementation for "Towards Universal Sequence Representation Learning for Recommender Systems".
Python
163
star
16

RSPapers

Must-read papers on Recommender System. 推荐系统相关论文整理(内含40篇论文,并持续更新中)
89
star
17

RecBole-CDR

This is a library built upon RecBole for cross-domain recommendation algorithms
Python
85
star
18

MVP

This repository is the official implementation of our paper MVP: Multi-task Supervised Pre-training for Natural Language Generation.
68
star
19

VQ-Rec

[WWW'23] PyTorch implementation for "Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders".
Python
62
star
20

RecBole-PJF

Python
51
star
21

Language-Specific-Neurons

Python
42
star
22

ChatCoT

The official repository of "ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models"
Python
41
star
23

CORE

[SIGIR'22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".
Python
37
star
24

BAMBOO

Python
32
star
25

JiuZhang3.0

The code and data for the paper JiuZhang3.0
Python
32
star
26

Multi-View-Co-Teaching

Code for our CIKM 2020 paper "Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network"
Python
29
star
27

JiuZhang

Our code will be public soon .
Python
26
star
28

ELMER

This repository is the official implementation of our EMNLP 2022 paper ELMER: A Non-Autoregressive Pre-trained Language Model for Efficient and Effective Text Generation
Python
26
star
29

RecBole-DA

Python
20
star
30

CARP

Python
16
star
31

SAFE

The pytorch implementation of the SAFE model presented in NAACL-Findings-2022
Python
16
star
32

Erya

14
star
33

RecBole-TRM

Python
13
star
34

MML

Python
12
star
35

Context-Tuning

This is the repository for COLING 2022 paper "Context-Tuning: Learning Contextualized Prompts for Natural Language Generation".
11
star
36

UniWeb

The official repository for our ACL 2023 Findings paper: The Web Can Be Your Oyster for Improving Language Models
10
star
37

FIGA

[ICLR 2024] This is the official implementation for the paper: "Beyond imitation: Leveraging fine-grained quality signals for alignment"
Python
8
star
38

PPGM

[ICDM'22] PyTorch implementation for "Privacy-Preserved Neural Graph Similarity Learning".
Python
6
star
39

Social-Datasets

A collection of social datasets for RecBole-GNN.
6
star
40

Contrastive-Curriculum-Learning

Python
5
star
41

LIVE

The official repository our ACL 2023 paper: "Learning to Imagine: Visually-Augmented Natural Language Generation"."
Python
5
star
42

ALLO

The official repository of "Low-Redundant Optimization for Large Language Model Alignment''
Python
5
star
43

M3SRec

4
star
44

Data-CUBE

3
star
45

Div-Ref

The official repository of "Not All Metrics Are Guilty: Improving NLG Evaluation Diversifying References".
Python
3
star
46

GenRec

Python
1
star
47

ETRec

Python
1
star
48

xLSTM-LSR

Python
1
star
49

MoL-TSR

Python
1
star
50

L2P-CSR

The implementation code of the TASLP 2023 paper "Learning to Perturb for Contrastive Learning of Unsupervised Sentence Representations"
Python
1
star