• Stars
    star
    445
  • Rank 98,085 (Top 2 %)
  • Language
  • Created over 1 year ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Ghost in the Minecraft: Generally Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory

Ghost in the Minecraft: Generally Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory

image

[Arxiv Paper]

Minecraft, as the world's best-selling game, boasts over 238 million copies sold and more than 140 million peak monthly active users. Within the game, hundreds of millions of players have experienced a digital second life by surviving, exploring and creating, closely resembling the human world in many aspects. Minecraft acts as a microcosm of the real world. Developing an automated agent that can master all technical challenges in Minecraft is akin to creating an artificial intelligence capable of autonomously learning and mastering the entire real-world technology.

Ghost in the Minecraft (GITM) is a novel framework integrates Large Language Models (LLMs) with text-based knowledge and memory, aiming to create Generally Capable Agents in Minecraft. GITM features the following characteristics:

  • Broad task coverage. All previous agents combined can only achieve 30% completion rate of all items in the Minecraft Overworld technology tree, while GITM is able to unlock 100% of them.

  • High success rate. GITM achieves 67.5% success rate on the "ObtainDiamond" task, improving the SOTA (OpenAI's VPT) by +47.5%.

  • Excellent training efficiency. OpenAI's VPT needs to be trained for 6,480 GPU days, DeepMind's DreamerV3 needs to be trained for 17 GPU days, while our GITM does not need any GPUs and can be trained in 2 days using only a single CPU node with 32 CPU cores.

This research shows the potential of LLMs in developing capable agents for handling long-horizon, complex tasks and adapting to uncertainties in open-world environments.

Alt Text

GITM can handle various biomes, environments, day and night scenes, and even encounter monsters with ease.

image

🤖 Demo Video

Due to size limit of github, the video is played at 2x speed, and the part of finding ores is played at 10x speed.

Obtain Enchanted Book

enchanted_book.mp4

The enchanted book is the ultimate creation in the technology tree of Minecraft Overworld.

Watch high-definition video on YouTube.

Obtain Diamond

diamond.mp4

Watch high-definition video on YouTube.

🏠 Overview

The biggest dilemma of previous RL-based agents is how to map an extremely long-horizon and complex goal to a sequence of lowest-level keyboard/mouse operations. To address this challenge, we propose our framework Ghost In the Minecraft (GITM), which uses Large Language Model (LLM)-based agents as a new paradigm. Instead of direct mapping like RL agents, our LLM-based agents employ a hierarchical approach. It first breaks down the decompose goal into sub-goals, then into structured actions, and finally into keyboard/mouse operations.

image

The proposed LLM-based agent consists of a LLM Decomposer, a LLM Planner, and a LLM Interface, which are responsible for the decomposition of sub-goals, structured actions, and keyboard/mouse operations, respectively.

  • LLM Decomposer first decomposes a goal in Minecraft into a series of well-defined sub-goals according to the text-based knowledge collected from the Internet.

  • LLM Planner then plans a sequence of structured actions for each sub-goal. LLM Planner also records and summarizes successful action lists into a text-based memory to enhance future planning.

  • LLM Interface execute the structured actions to interact with the environment by processing raw keyboard/mouse input and receiving raw observations.

image

🎫 Results

Success Rate for the Entire Technology Tree

image

GITM achieves non-zero success rates for all items which indicates a strong collecting capability, while all previous methods combined can only complete 30% of these items.

Success Rate for the ObtainDiamond Challenge

Methods Crafting Table image Wooden Pickaxe image Stone Pickaxe image Iron Pickaxe image Diamond image
DreamerV3 - 50.0 3.0 0.01 0.01
DEPS 90.0 80.0 73.3 10.0 0.6
VPT 100.0 100.0 100.0 85.0 20.0
Our GITM 100.0 100.0 100.0 95.0 67.5

Learning Efficiency

image

GITM only requires a single CPU node with 32 cores for training. Compared with 6,480 GPU days of OpenAI's VPT and 17 GPU days of DeepMind's DreamerV3, GITM improves the efficiency by at least 10,000 times.

🖊️ Citation

If you find this project useful in your research, please consider cite:

@article{zhu2023ghost,
  title={Ghost in the Minecraft: Generally Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory},
  author={Zhu, Xizhou and Chen, Yuntao and Tian, Hao and Tao, Chenxin and Su, Weijie and Yang, Chenyu and Huang, Gao and Li, Bin and Lu, Lewei and Wang, Xiaogang and Qiao, Yu and Zhang, Zhaoxiang and Dai, Jifeng},
  journal={arXiv preprint arXiv:2305.17144},
  year={2023}
}

More Repositories

1

InternVL

[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4o. 接近GPT-4o表现的开源多模态对话模型
Python
5,753
star
2

LLaMA-Adapter

[ICLR 2024] Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters
Python
5,717
star
3

DragGAN

Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)
Python
4,996
star
4

InternGPT

InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)
Python
3,198
star
5

Ask-Anything

[CVPR2024 Highlight][VideoChatGPT] ChatGPT with video understanding! And many more supported LMs such as miniGPT4, StableLM, and MOSS.
Python
2,984
star
6

InternImage

[CVPR 2023 Highlight] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
Python
2,502
star
7

InternVideo

[ECCV2024] Video Foundation Models & Data for Multimodal Understanding
Python
1,392
star
8

VisionLLM

VisionLLM Series
Python
874
star
9

VideoMamba

[ECCV2024] VideoMamba: State Space Model for Efficient Video Understanding
Python
787
star
10

OmniQuant

[ICLR2024 spotlight] OmniQuant is a simple and powerful quantization technique for LLMs.
Python
691
star
11

VideoMAEv2

[CVPR 2023] VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking
Python
486
star
12

DCNv4

[CVPR 2024] Deformable Convolution v4
Python
463
star
13

all-seeing

[ICLR 2024 & ECCV 2024] The All-Seeing Projects: Towards Panoptic Visual Recognition&Understanding and General Relation Comprehension of the Open World"
Python
452
star
14

Multi-Modality-Arena

Chatbot Arena meets multi-modality! Multi-Modality Arena allows you to benchmark vision-language models side-by-side while providing images as inputs. Supports MiniGPT-4, LLaMA-Adapter V2, LLaVA, BLIP-2, and many more!
Python
428
star
15

Vision-RWKV

Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures
Python
352
star
16

CaFo

[CVPR 2023] Prompt, Generate, then Cache: Cascade of Foundation Models makes Strong Few-shot Learners
Python
344
star
17

PonderV2

PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm
Python
311
star
18

LAMM

[NeurIPS 2023 Datasets and Benchmarks Track] LAMM: Multi-Modal Large Language Models and Applications as AI Agents
Python
296
star
19

UniFormerV2

[ICCV2023] UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer
Python
280
star
20

unmasked_teacher

[ICCV2023 Oral] Unmasked Teacher: Towards Training-Efficient Video Foundation Models
Python
276
star
21

OmniCorpus

OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text
Python
259
star
22

HumanBench

This repo is official implementation of HumanBench (CVPR2023)
Python
231
star
23

Instruct2Act

Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions with Large Language Model
Python
223
star
24

EfficientQAT

EfficientQAT: Efficient Quantization-Aware Training for Large Language Models
Python
198
star
25

gv-benchmark

General Vision Benchmark, GV-B, a project from OpenGVLab
Python
189
star
26

ControlLLM

ControlLLM: Augment Language Models with Tools by Searching on Graphs
Python
181
star
27

InternVideo2

152
star
28

UniHCP

Official PyTorch implementation of UniHCP
Python
149
star
29

efficient-video-recognition

Python
114
star
30

SAM-Med2D

Official implementation of SAM-Med2D
Jupyter Notebook
114
star
31

EgoVideo

[CVPR 2024 Champions] Solutions for EgoVis Chanllenges in CVPR 2024
Jupyter Notebook
103
star
32

DiffRate

[ICCV 23]An approach to enhance the efficiency of Vision Transformer (ViT) by concurrently employing token pruning and token merging techniques, while incorporating a differentiable compression rate.
Jupyter Notebook
86
star
33

MMT-Bench

ICML'2024 | MMT-Bench: A Comprehensive Multimodal Benchmark for Evaluating Large Vision-Language Models Towards Multitask AGI
Python
85
star
34

Awesome-DragGAN

Awesome-DragGAN: A curated list of papers, tutorials, repositories related to DragGAN
75
star
35

MM-NIAH

This is the official implementation of the paper "Needle In A Multimodal Haystack"
Python
70
star
36

M3I-Pretraining

69
star
37

STM-Evaluation

Python
69
star
38

MUTR

[AAAI 2024] Referred by Multi-Modality: A Unified Temporal Transformers for Video Object Segmentation
Python
65
star
39

LCL

Vision Model Pre-training on Interleaved Image-Text Data via Latent Compression Learning
Python
63
star
40

ChartAst

ChartAssistant is a chart-based vision-language model for universal chart comprehension and reasoning.
Python
60
star
41

LORIS

Long-Term Rhythmic Video Soundtracker, ICML2023
Python
54
star
42

DDPS

Official Implementation of "Denoising Diffusion Semantic Segmentation with Mask Prior Modeling"
Python
53
star
43

Awesome-LLM4Tool

A curated list of the papers, repositories, tutorials, and anythings related to the large language models for tools
52
star
44

PIIP

NeurIPS 2024 Spotlight ⭐️ Parameter-Inverted Image Pyramid Networks (PIIP)
Python
51
star
45

InternVL-MMDetSeg

Train InternViT-6B in MMSegmentation and MMDetection with DeepSpeed
Jupyter Notebook
50
star
46

GUI-Odyssey

GUI Odyssey is a comprehensive dataset for training and evaluating cross-app navigation agents. GUI Odyssey consists of 7,735 episodes from 6 mobile devices, spanning 6 types of cross-app tasks, 201 apps, and 1.4K app combos.
Python
47
star
47

Siamese-Image-Modeling

[CVPR 2023]Implementation of Siamese Image Modeling for Self-Supervised Vision Representation Learning
Python
33
star
48

De-focus-Attention-Networks

Learning 1D Causal Visual Representation with De-focus Attention Networks
Python
28
star
49

Multitask-Model-Selector

Implementation of Foundation Model is Efficient Multimodal Multitask Model Selector
Python
27
star
50

Official-ConvMAE-Det

Python
13
star
51

perception_test_iccv2023

Champion Solutions repository for Perception Test challenges in ICCV2023 workshop.
Python
13
star
52

opengvlab.github.io

12
star
53

MovieMind

9
star
54

EmbodiedGPT

5
star
55

DriveMLM

3
star
56

.github

2
star