• Stars
    star
    454
  • Rank 96,373 (Top 2 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 6 years ago
  • Updated about 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Image classification with NVIDIA TensorRT from TensorFlow models.

TensorFlow->TensorRT Image Classification

landing graphic

This contains examples, scripts and code related to image classification using TensorFlow models (from here) converted to TensorRT. Converting TensorFlow models to TensorRT offers significant performance gains on the Jetson TX2 as seen below.

Models

The table below shows various details related to pretrained models ported from the TensorFlow slim model zoo.

Model Input Size TensorRT (TX2 / Half) TensorRT (TX2 / Float) TensorFlow (TX2 / Float) Input Name Output Name Preprocessing Fn.
inception_v1 224x224 7.98ms 12.8ms 27.6ms input InceptionV1/Logits/SpatialSqueeze inception
inception_v3 299x299 26.3ms 46.1ms 98.4ms input InceptionV3/Logits/SpatialSqueeze inception
inception_v4 299x299 52.1ms 88.2ms 176ms input InceptionV4/Logits/Logits/BiasAdd inception
inception_resnet_v2 299x299 53.0ms 98.7ms 168ms input InceptionResnetV2/Logits/Logits/BiasAdd inception
resnet_v1_50 224x224 15.7ms 27.1ms 63.9ms input resnet_v1_50/SpatialSqueeze vgg
resnet_v1_101 224x224 29.9ms 51.8ms 107ms input resnet_v1_101/SpatialSqueeze vgg
resnet_v1_152 224x224 42.6ms 78.2ms 157ms input resnet_v1_152/SpatialSqueeze vgg
resnet_v2_50 299x299 27.5ms 44.4ms 92.2ms input resnet_v2_50/SpatialSqueeze inception
resnet_v2_101 299x299 49.2ms 83.1ms 160ms input resnet_v2_101/SpatialSqueeze inception
resnet_v2_152 299x299 74.6ms 124ms 230ms input resnet_v2_152/SpatialSqueeze inception
mobilenet_v1_0p25_128 128x128 2.67ms 2.65ms 15.7ms input MobilenetV1/Logits/SpatialSqueeze inception
mobilenet_v1_0p5_160 160x160 3.95ms 4.00ms 16.9ms input MobilenetV1/Logits/SpatialSqueeze inception
mobilenet_v1_1p0_224 224x224 12.9ms 12.9ms 24.4ms input MobilenetV1/Logits/SpatialSqueeze inception
vgg_16 224x224 38.2ms 79.2ms 171ms input vgg_16/fc8/BiasAdd vgg

The times recorded include data transfer to GPU, network execution, and data transfer back from GPU. Time does not include preprocessing. See scripts/test_tf.py, scripts/test_trt.py, and src/test/test_trt.cu for implementation details.

Setup

  1. Flash the Jetson TX2 using JetPack 3.2. Be sure to install

    • CUDA 9.0
    • OpenCV4Tegra
    • cuDNN
    • TensorRT 3.0
  2. Install pip on Jetson TX2.

    sudo apt-get install python-pip
    
  3. Install TensorFlow on Jetson TX2.

    1. Download the TensorFlow 1.5.0 pip wheel from here. This build of TensorFlow is provided as a convenience for the purposes of this project.

    2. Install TensorFlow using pip

        sudo pip install tensorflow-1.5.0rc0-cp27-cp27mu-linux_aarch64.whl
      
  4. Install uff exporter on Jetson TX2.

    1. Download TensorRT 3.0.4 for Ubuntu 16.04 and CUDA 9.0 tar package from https://developer.nvidia.com/nvidia-tensorrt-download.

    2. Extract archive

        tar -xzf TensorRT-3.0.4.Ubuntu-16.04.3.x86_64.cuda-9.0.cudnn7.0.tar.gz
      
    3. Install uff python package using pip

        sudo pip install TensorRT-3.0.4/uff/uff-0.2.0-py2.py3-none-any.whl
      
  5. Clone and build this project

    git clone --recursive https://github.com/NVIDIA-Jetson/tf_to_trt_image_classification.git
    cd tf_to_trt_image_classification
    mkdir build
    cd build
    cmake ..
    make 
    cd ..
    

Download models and create frozen graphs

Run the following bash script to download all of the pretrained models.

source scripts/download_models.sh

If there are any models you don't want to use, simply remove the URL from the model list in scripts/download_models.sh.
Next, because the TensorFlow models are provided in checkpoint format, we must convert them to frozen graphs for optimization with TensorRT. Run the scripts/models_to_frozen_graphs.py script.

python scripts/models_to_frozen_graphs.py

If you removed any models in the previous step, you must add 'exclude': true to the corresponding item in the NETS dictionary located in scripts/model_meta.py. If you are following the instructions for executing engines below, you may also need some sample images. Run the following script to download a few images from ImageNet.

source scripts/download_images.sh

Convert frozen graph to TensorRT engine

Run the scripts/convert_plan.py script from the root directory of the project, referencing the models table for relevant parameters. For example, to convert the Inception V1 model run the following

python scripts/convert_plan.py data/frozen_graphs/inception_v1.pb data/plans/inception_v1.plan input 224 224 InceptionV1/Logits/SpatialSqueeze 1 0 float

The inputs to the convert_plan.py script are

  1. frozen graph path
  2. output plan path
  3. input node name
  4. input height
  5. input width
  6. output node name
  7. max batch size
  8. max workspace size
  9. data type (float or half)

This script assumes single output single input image models, and may not work out of the box for models other than those in the table above.

Execute TensorRT engine

Call the examples/classify_image program from the root directory of the project, referencing the models table for relevant parameters. For example, to run the Inception V1 model converted as above

./build/examples/classify_image/classify_image data/images/gordon_setter.jpg data/plans/inception_v1.plan data/imagenet_labels_1001.txt input InceptionV1/Logits/SpatialSqueeze inception

For reference, the inputs to the example program are

  1. input image path
  2. plan file path
  3. labels file (one label per line, line number corresponds to index in output)
  4. input node name
  5. output node name
  6. preprocessing function (either vgg or inception)

We provide two image label files in the data folder. Some of the TensorFlow models were trained with an additional "background" class, causing the model to have 1001 outputs instead of 1000. To determine the number of outputs for each model, reference the NETS variable in scripts/model_meta.py.

Benchmark all models

To benchmark all of the models, first convert all of the models that you downloaded above into TensorRT engines. Run the following script to convert all models

python scripts/frozen_graphs_to_plans.py

If you want to change parameters related to TensorRT optimization, just edit the scripts/frozen_graphs_to_plans.py file. Next, to benchmark all of the models run the scripts/test_trt.py script

python scripts/test_trt.py

Once finished, the timing results will be stored at data/test_output_trt.txt. If you want to also benchmark the TensorFlow models, simply run.

python scripts/test_tf.py

The results will be stored at data/test_output_tf.txt. This benchmarking script loads an example image as input, make sure you have downloaded the sample images as above.

More Repositories

1

torch2trt

An easy to use PyTorch to TensorRT converter
Python
4,547
star
2

jetbot

An educational AI robot based on NVIDIA Jetson Nano.
Jupyter Notebook
3,012
star
3

deepstream_python_apps

DeepStream SDK Python bindings and sample applications
Jupyter Notebook
1,439
star
4

Lidar_AI_Solution

A project demonstrating Lidar related AI solutions, including three GPU accelerated Lidar/camera DL networks (PointPillars, CenterPoint, BEVFusion) and the related libs (cuPCL, 3D SparseConvolution, YUV2RGB, cuOSD,).
Python
1,249
star
5

deepstream_reference_apps

Samples for TensorRT/Deepstream for Tesla & Jetson
C++
1,127
star
6

jetracer

An autonomous AI racecar using NVIDIA Jetson Nano
Jupyter Notebook
1,059
star
7

redtail

Perception and AI components for autonomous mobile robotics.
C++
1,013
star
8

trt_pose

Real-time pose estimation accelerated with NVIDIA TensorRT
Python
974
star
9

tf_trt_models

TensorFlow models accelerated with NVIDIA TensorRT
Python
683
star
10

nanosam

A distilled Segment Anything (SAM) model capable of running real-time with NVIDIA TensorRT
Python
616
star
11

cuPCL

A project demonstrating how to use the libs of cuPCL.
C++
551
star
12

yolo_deepstream

yolo model qat and deploy with deepstream&tensorrt
Python
534
star
13

CUDA-PointPillars

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.
Python
525
star
14

jetcam

Easy to use Python camera interface for NVIDIA Jetson
Jupyter Notebook
426
star
15

deepstream_tao_apps

Sample apps to demonstrate how to deploy models trained with TAO on DeepStream
C++
369
star
16

jetson_benchmarks

Jetson Benchmark
Python
363
star
17

deepstream_360_d_smart_parking_application

Describes the full end to end smart parking application that is available with DeepStream 5.0
JavaScript
340
star
18

deepstream_pose_estimation

This is a DeepStream application to demonstrate a human pose estimation pipeline.
C++
290
star
19

jetson_dla_tutorial

A tutorial for getting started with the Deep Learning Accelerator (DLA) on NVIDIA Jetson
Python
272
star
20

face-mask-detection

Face Mask Detection using NVIDIA Transfer Learning Toolkit (TLT) and DeepStream for COVID-19
Python
243
star
21

nanoowl

A project that optimizes OWL-ViT for real-time inference with NVIDIA TensorRT.
Python
230
star
22

deepstream-occupancy-analytics

This is a sample application for counting people entering/leaving in a building using NVIDIA Deepstream SDK, Transfer Learning Toolkit (TLT), and pre-trained models. This application can be used to build real-time occupancy analytics applications for smart buildings, hospitals, retail, etc. The application is based on deepstream-test5 sample application.
C
217
star
23

tensorrt_plugin_generator

A simple tool that can generate TensorRT plugin code quickly.
Python
215
star
24

jetcard

An SD card image for web programming AI projects with NVIDIA Jetson Nano
Python
210
star
25

trt_pose_hand

Real-time hand pose estimation and gesture classification using TensorRT
Jupyter Notebook
207
star
26

redaction_with_deepstream

An example of using DeepStream SDK for redaction
C
205
star
27

deepstream_lpr_app

Sample app code for LPR deployment on DeepStream
C
203
star
28

jetson-cloudnative-demo

Multi-container demo for Jetson Xavier NX and Jetson AGX Xavier
Shell
186
star
29

cuDLA-samples

YOLOv5 on Orin DLA
Python
177
star
30

jetson-multicamera-pipelines

Python
158
star
31

jetson-intro-to-distillation

A tutorial introducing knowledge distillation as an optimization technique for deployment on NVIDIA Jetson
Python
143
star
32

Gesture-Recognition

Gesture recognition neural network to classify various hand gestures
Python
129
star
33

clip-distillation

Zero-label image classification via OpenCLIP knowledge distillation
Python
104
star
34

ros2_torch_trt

ROS 2 packages for PyTorch and TensorRT for real-time classification and object detection on Jetson Platforms
Python
101
star
35

yolov5_gpu_optimization

This repository provides YOLOV5 GPU optimization sample
Python
100
star
36

Foresee-Navigation

Semantic-Segmentation based autonomous indoor navigation for mobile robots
C++
91
star
37

deepstream_parallel_inference_app

A project demonstrating how to use nvmetamux to run multiple models in parallel.
C++
90
star
38

deepstream_4.x_apps

deepstream 4.x samples to deploy TLT training models
C++
85
star
39

tao-toolkit-triton-apps

Sample app code for deploying TAO Toolkit trained models to Triton
Python
84
star
40

ros2_deepstream

ROS 2 package for NVIDIA DeepStream applications on Jetson Platforms
Python
82
star
41

argus_camera

Simple Python / C++ interface to CSI camera connected to NVIDIA Jetson.
C++
81
star
42

turtlebot3

Autonomous delivery robot with turtlebot3 and Jetson TX2
C++
79
star
43

ros2_jetson

Shell
79
star
44

jetson-copilot

A reference application for a local AI assistant with LLM and RAG
Python
79
star
45

jetson-stereo-depth

Python
78
star
46

my-jetson-nano-baseboard

An open source Jetson Nano baseboard and tools to design your own.
Python
77
star
47

nvidia-tao

Jupyter Notebook
77
star
48

jetnet

Easy to use neural networks for NVIDIA Jetson (and desktop too!)
Python
75
star
49

deepstream_triton_model_deploy

How to deploy open source models using DeepStream and Triton Inference Server
C++
73
star
50

jetson-generative-ai-playground

71
star
51

ros2_tao_pointpillars

ROS2 node for 3D object detection using TAO-PointPillars.
C++
70
star
52

Formula1Epoch

An autonomous R.C. racecar which detects people.
Makefile
66
star
53

ros2_trt_pose

ROS 2 package for "trt_pose": real-time human pose estimation on NVIDIA Jetson Platform
Python
63
star
54

Electron

An autonomous deep learning indoor delivery robot made with Jetson
C++
62
star
55

deepstream_dockers

A project demonstrating how to make DeepStream docker images.
Shell
57
star
56

ros2_jetson_stats

ROS 2 package for monitoring and controlling NVIDIA Jetson Platform resources
Python
56
star
57

isaac_ros_apriltag

CUDA-accelerated Apriltag detection
C++
55
star
58

jetson-trashformers

Autonomous humanoid that picks up and throws away trash
C++
52
star
59

NVIDIA-Optical-Character-Detection-and-Recognition-Solution

This repository provides optical character detection and recognition solution optimized on Nvidia devices.
C++
51
star
60

sdg_pallet_model

A pallet model trained with SDG optimized for NVIDIA Jetson.
Python
48
star
61

JEP_ChatBot

ChatBot: sample for TensorRT inference with a TF model
Python
46
star
62

jetson-min-disk

Shell
45
star
63

whisper_trt

A project that optimizes Whisper for low latency inference using NVIDIA TensorRT
Python
44
star
64

Deepstream-Dewarper-App

This project demonstrate how to infer and track from a 360 videos by using the dewarper plugin.
C
43
star
65

deepstream-retail-analytics

A DeepStream sample application demonstrating end-to-end retail video analytics for brick-and-mortar retail.
C++
42
star
66

isaac_ros_image_pipeline

Isaac ROS image_pipeline package for hardware-accelerated image processing in ROS2.
C++
41
star
67

gesture_recognition_tlt_deepstream

A project demonstrating how to train your own gesture recognition deep learning pipeline. We start with a pre-trained detection model, repurpose it for hand detection using Transfer Learning Toolkit 3.0, and use it together with the purpose-built gesture recognition model. Once trained, we deploy this model on NVIDIA® Jetson™ using Deepstream SDK.
C
40
star
68

synthetic_data_generation_training_workflow

Workflow for generating synthetic data and training CV models.
Jupyter Notebook
38
star
69

YOLOv5-with-Isaac-ROS

Sample showing how to use YOLOv5 with Nvidia Isaac ROS DNN Inference
Python
38
star
70

retinanet_for_redaction_with_deepstream

This sample shows how to train and deploy a deep learning model for the real time redaction of faces from video streams using the NVIDIA DeepStream SDK
C
37
star
71

scene-text-recognition

Python
34
star
72

deep_nav_layers

A series of plugins to the ROS navigation stack to incorporate deep learning inputs.
Makefile
33
star
73

Nav2-with-Isaac-ROS-GEMs

Python
33
star
74

tao_toolkit_recipes

Jupyter Notebook
32
star
75

GreenMachine

AI kiosk with a camera and a projector to visualize waste type of cafeteria objects
Python
32
star
76

viz_3Dbbox_ros2_pointpillars

Visualization tool for 3D bounding box results of TAO-PointPillars
Python
28
star
77

isaac_demo

Set of demo to try Isaac ROS with Isaac SIM
Python
27
star
78

tlt-iva-examples

A notebook that demonstrates how to use the NVIDIA Intelligent Video Analytics suite to detect objects in real-time. We use Transfer Learning Toolkit to train a fast and accurate detector and DeepStream to run that detector on an NVIDIA Jetson edge device.
Jupyter Notebook
27
star
79

mmj_genai

A reference example for integrating NanoOwl with Metropolis Microservices for Jetson
Python
25
star
80

TAO-Toolkit-Whitepaper-use-cases

TAO best practices. How to adapt for a new domain, new classes, and generalize the model with a small dataset using Nvidia's TAO toolkit
Jupyter Notebook
24
star
81

ros2_nanollm

ROS2 nodes for LLM, VLM, VLA
Python
24
star
82

caffe_ros

Package containing nodes for deep learning in ROS.
C++
23
star
83

jetson_isaac_ros_visual_slam_tutorial

Hosting a tutorial documentation for running Isaac ROS Visual SLAM on Jetson device.
23
star
84

jetbot_mini

Python
22
star
85

centernet_kinect

Real-time CenterNet based object detection on fused IR/Depth images from Kinect sensor. Works on NVIDIA Jetson.
Python
19
star
86

deepstream_libraries

DeepStream Libraries offer CVCUDA, NvImageCodec, and PyNvVideoCodec modules as Python APIs for seamless integration into custom frameworks.
Python
19
star
87

robot_freespace_seg_Isaac_TAO

In this workflow we demonstrate using SDG + TAO for a freespace segmentation application
Python
17
star
88

deepstream-yolo3-gige-apps

A project demonstration on how to use the GigE camera to do the DeepStream Yolo3 object detection, how to set up the GigE camera, and deployment for the DeepStream apps.
C
16
star
89

ros2_torch2trt_examples

ros2 packages for torch2trt examples
Python
15
star
90

ros2_trt_pose_hand

ROS2 package for trt_pos_hand, "Real-time hand pose estimation and gesture classification using TensorRT"
Python
14
star
91

deepstream_triton_migration

Triton Migration Guide for DeepStreamSDK.
14
star
92

ROS2-NanoOWL

ROS 2 node for open-vocabulary object detection using NanoOWL.
Python
14
star
93

jetson-platform-services

A collection of reference AI microservices and workflows for Jetson Platform Services
Jupyter Notebook
13
star
94

jetson_virtual_touchpanel

Enables Jetson to be controlled with handpose using trt_pose
Python
12
star
95

deepstream-segmentation-analytics

A project demonstration to do the industrial defect segmentation based on loading the image from directory and generate the output ground truth.
C
11
star
96

isaac_ros_common

Isaac ROS common utilities, Dockerfiles, and testing code.
Python
11
star
97

tao_byom_examples

Examples of converting different open-source deep learning models to TAO compatible format through TAO BYOM package.
Python
11
star
98

husky_demo

Husky Simulation and Hardware In the Loop simulation on Isaac SIM with Isaac ROS
Python
10
star
99

mmj_utils

A utility library to help integrate Python applications with Metropolis Microservices for Jetson
Python
9
star
100

a2j_handpose_3d

Python
8
star