上篇
反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)来解决一个具体的问题。
1. BP算法的推导
图1 一个简单的三层神经网络图 1 所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出。输出值的值域为,例如的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大。
1.1 前向传播的计算
为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:
输入的样本为:
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
1.1.1 第一层隐藏层的计算
图2 计算第一层隐藏层同理有:
假设我们选择函数作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为:、和。
1.1.2 第二层隐藏层的计算
图3 计算第二层隐藏层即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到和的输入分别为:
1.1.3 输出层的计算
图4 计算输出层即:
因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为:。
1.2 反向传播的计算
在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为,其中 是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重和偏置)的偏导数。
假设我们要对第层隐藏层的参数和求偏导数,即求 和 。假设代表第层神经元的输入,即,其中 为前一层神经元的输出,则根据链式法则有:
1.2.1 计算偏导数$\frac{\partial z^{(k)}}{\partial W^{(k)}}$
上式中,代表第层神经元的权重矩阵的第行,代表第层神经元的权重矩阵的第行中的第列。
我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:
1.2.2 计算偏导数$\frac{\partial z^{(k)}}{\partial b^{(k)}}$
因为偏置b是一个常数项,因此偏导数的计算也很简单:
依然以第一层隐藏层的神经元为例,则有:
1.2.3 计算偏导数$\frac{\partial \mathrm{L}(\mathrm{y}, \widehat{\mathrm{y}})}{\partial z^{(k)}}$
偏导数又称为误差项(error term,也称为“灵敏度”),一般用表示,例如是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。
根据第一节的前向计算,我们知道第层的输入与第层的输出之间的关系为:
由上式我们可以看到,第层神经元的误差项是由第层的误差项乘以第层的权重,再乘以第层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数 、和 ,则和 可分别表示为:
下面是基于随机梯度下降更新参数的反向传播算法:
单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。
2. 图解BP算法
图5 图解BP算法我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:
输入的样本为(假设其真实类标为"1"):
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
假设所有的激活函数均为Logistic函数:。使用均方误差函数作为损失函数:
为了方便求导,我们将损失函数简化为:
2.1 前向传播
我们首先初始化神经网络的参数,计算第一层神经元:
上图中我们计算出了第一层隐藏层的第一个神经元的输入和输出,同理可以计算第二个和第三个神经元的输入和输出:
接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入z₄和输出f₄(z₄):
2.2 误差反向传播
首先计算输出层的误差项,我们的误差函数为,由于该样本的类标为“1”,而预测值为,因此误差为,输出层的误差项为:
接着计算第二层隐藏层的误差项,根据误差项的计算公式有:
最后是计算第一层隐藏层的误差项:
2.3 更新参数
上一小节中我们已经计算出了每一层的误差项,现在我们要利用每一层的误差项和梯度来更新每一层的参数,权重W和偏置b的更新公式如下:
通常权重的更新会加上一个正则化项来避免过拟合,这里为了简化计算,我们省去了正则化项。上式中的是学习率,我们设其值为0.1。参数更新的计算相对简单,每一层的计算方式都相同,因此本文仅演示第一层隐藏层的参数更新:
3. 小结
至此,我们已经完整介绍了BP算法的原理,并使用具体的数值做了计算。在下篇中,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)。
下篇
在上篇中我们详细介绍了BP算法的原理和推导过程,并且用实际的数据进行了计算演练。在下篇中,我们将自己实现BP算法(不使用第三方的算法框架),并用来解决鸢尾花分类问题。
鸢尾花数据集如图2所示,总共有三个品种的鸢尾花(setosa、versicolor和virginica),每个类别50条样本数据,每个样本有四个特征(花萼长度、花萼宽度、花瓣长度以及花瓣宽度)。
首先我们导入需要的包:
from csv import reader
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import random
import matplotlib.pyplot as plt
import math
接下来我们实现一个数据集的加载和预处理的函数load_dataset
:
def load_dataset(dataset_path, n_train_data):
"""加载数据集,对数据进行预处理,并划分训练集和验证集
:param dataset_path: 数据集文件路径
:param n_train_data: 训练集的数据量
:return: 划分好的训练集和验证集
"""
dataset = []
label_dict = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
with open(dataset_path, 'r') as file:
# 读取CSV文件,以逗号为分隔符
csv_reader = reader(file, delimiter=',')
for row in csv_reader:
# 将字符串类型的特征值转换为浮点型
row[0:4] = list(map(float, row[0:4]))
# 将标签替换为整型
row[4] = label_dict[row[4]]
# 将处理好的数据加入数据集中
dataset.append(row)
# 对数据进行归一化处理
dataset = np.array(dataset)
mms = MinMaxScaler()
for i in range(dataset.shape[1] - 1):
dataset[:, i] = mms.fit_transform(dataset[:, i].reshape(-1, 1)).flatten()
# 将类标转为整型
dataset = dataset.tolist()
for row in dataset:
row[4] = int(row[4])
# 打乱数据集
random.shuffle(dataset)
# 划分训练集和验证集
train_data = dataset[0:n_train_data]
val_data = dataset[n_train_data:]
return train_data, val_data
在load_dataset
函数中,我们实现了数据集的读取、数据的归一化处理以及对数据集进行了shuffle
操作等,最后函数返回了划分好的训练集和验证集。
实现数据预处理之后,接下来我们开始实现BP算法的关键部分(如果读者对算法原理有不清楚的地方,可以查看"一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)")。首先我们实现神经元的计算部分、激活函数以及激活函数的求导部分。
def fun_z(weights, inputs):
"""计算神经元的输入:z = weight * inputs + b
:param weights: 网络参数(权重矩阵和偏置项)
:param inputs: 上一层神经元的输出
:return: 当前层神经元的输入
"""
bias_term = weights[-1]
z = 0
for i in range(len(weights)-1):
z += weights[i] * inputs[i]
z += bias_term
return z
def sigmoid(z):
"""激活函数(Sigmoid):f(z) = Sigmoid(z)
:param z: 神经元的输入
:return: 神经元的输出
"""
return 1.0 / (1.0 + math.exp(-z))
def sigmoid_derivative(output):
"""Sigmoid激活函数求导
:param output: 激活函数的输出值
:return: 求导计算结果
"""
return output * (1.0 - output)
函数fun_z
实现了公式"z = weight * inputs + b",其中inputs是上一层网络的输出,weight是当前层的权重矩阵,b是当前层的偏置项,计算得到的z是当前层的输入。
函数sigmoid
是Sigmoid激活函数的实现,将z作为激活函数的输入,计算得到当前层的输出,并传递到下一层。
函数sigmoid_derivative
是Sigmoid函数求导的实现,在误差反向传播的时候需要用到。
接下来我们实现BP网络的前向传播:
def forward_propagate(network, inputs):
"""前向传播计算
:param network: 神经网络
:param inputs: 一个样本数据
:return: 前向传播计算的结果
"""
for layer in network: # 循环计算每一层
new_inputs = []
for neuron in layer: # 循环计算每一层的每一个神经元
z = fun_z(neuron['weights'], inputs)
neuron['output'] = sigmoid(z)
new_inputs.append(neuron['output'])
inputs = new_inputs
return inputs
前向计算的过程比较简单,和我们在上篇中介绍的计算过程一致。稍微麻烦一点的是误差反向传播的计算:
def backward_propagate_error(network, actual_label):
"""误差进行反向传播
:param network: 神经网络
:param actual_label: 真实的标签值
:return:
"""
for i in reversed(range(len(network))): # 从最后一层开始计算误差
layer = network[i]
errors = list()
if i != len(network)-1: # 不是输出层
for j in range(len(layer)): # 计算每一个神经元的误差
error = 0.0
for neuron in network[i + 1]:
error += (neuron['weights'][j] * neuron['delta'])
errors.append(error)
else: # 输出层
for j in range(len(layer)): # 计算每一个神经元的误差
neuron = layer[j]
errors.append(actual_label[j] - neuron['output'])
# 计算误差项 delta
for j in range(len(layer)):
neuron = layer[j]
neuron['delta'] = errors[j] * sigmoid_derivative(neuron['output'])
误差反向传播过程中,我们首先需要根据模型的输出来计算得到误差,然后计算输出层的误差项。得到输出层的误差项之后,我们就可以根据上篇中介绍的"第k层神经元的误差项是由第k+1层的误差项乘以第k+1层的权重,再乘以第k层激活函数的导数得到"来计算其它层的误差项。
在计算得到每一层的误差项之后,我们根据上篇中介绍的权重矩阵和偏置项的更新公式来更新参数:
def update_parameters(network, row, l_rate):
"""利用误差更新神经网络的参数(权重矩阵和偏置项)
:param network: 神经网络
:param row: 一个样本数据
:param l_rate: 学习率
:return:
"""
for i in range(len(network)):
inputs = row[:-1]
if i != 0: # 获取上一层网络的输出
inputs = [neuron['output'] for neuron in network[i - 1]]
for neuron in network[i]:
# 更新权重矩阵
for j in range(len(inputs)):
neuron['weights'][j] += l_rate * neuron['delta'] * inputs[j]
# 更新偏置项
neuron['weights'][-1] += l_rate * neuron['delta']
到这里所有的关键部分我们都已经实现了,接下来我们实现网络的初始化以及网络的训练部分,首先实现网络的初始化:
def initialize_network(n_inputs, n_hidden, n_outputs):
"""初始化BP网络(初始化隐藏层和输出层的参数:权重矩阵和偏置项)
:param n_inputs: 特征列数
:param n_hidden: 隐藏层神经元个数
:param n_outputs: 输出层神经元个数,即分类的总类别数
:return: 初始化后的神经网络
"""
network = list()
# 隐藏层
hidden_layer = [{'weights': [random.random() for i in range(n_inputs + 1)]} for i in range(n_hidden)]
network.append(hidden_layer)
# 输出层
output_layer = [{'weights': [random.random() for i in range(n_hidden + 1)]} for i in range(n_outputs)]
network.append(output_layer)
return network
这里我们初始化了一个两层神经网络(一个隐藏层和一个输出层)。在初始化参数的时候,我们将权重矩阵和偏置项放在了一个数组中("weights"),数组的最后一个元素是偏置项,前面的元素是权重矩阵。
接下来我们实现模型的训练部分:
def train(train_data, l_rate, epochs, n_hidden, val_data):
"""训练神经网络(迭代n_epoch个回合)
:param train_data: 训练集
:param l_rate: 学习率
:param epochs: 迭代的回合数
:param n_hidden: 隐藏层神经元个数
:param val_data: 验证集
:return: 训练好的网络
"""
# 获取特征列数
n_inputs = len(train_data[0]) - 1
# 获取分类的总类别数
n_outputs = len(set([row[-1] for row in train_data]))
# 初始化网络
network = initialize_network(n_inputs, n_hidden, n_outputs)
acc = []
for epoch in range(epochs): # 训练epochs个回合
for row in train_data:
# 前馈计算
_ = forward_propagate(network, row)
# 处理一下类标,用于计算误差
actual_label = [0 for i in range(n_outputs)]
actual_label[row[-1]] = 1
# 误差反向传播计算
backward_propagate_error(network, actual_label)
# 更新参数
update_parameters(network, row, l_rate)
# 保存当前epoch模型在验证集上的准确率
acc.append(validation(network, val_data))
# 绘制出训练过程中模型在验证集上的准确率变化
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.plot(acc)
plt.show()
return network
我们总共训练了epochs
个回合,这里我们使用随机梯度下降来优化模型,因此每次都用一个样本来更新参数。接下来我们实现一个函数用来验证模型的效果:
def validation(network, val_data):
"""测试模型在验证集上的效果
:param network: 神经网络
:param val_data: 验证集
:return: 模型在验证集上的准确率
"""
# 获取预测类标
predicted_label = []
for row in val_data:
prediction = predict(network, row)
predicted_label.append(prediction)
# 获取真实类标
actual_label = [row[-1] for row in val_data]
# 计算准确率
accuracy = accuracy_calculation(actual_label, predicted_label)
# print("测试集实际类标:", actual_label)
# print("测试集上的预测类标:", predicted_label)
return accuracy
训练过程中的每一个回合,我们都用模型对验证集进行一次预测,并将预测的结果保存,用来绘制训练过程中模型在验证集上的准确率的变化过程。准确率的计算以及使用模型进行预测的实现如下:
def accuracy_calculation(actual_label, predicted_label):
"""计算准确率
:param actual_label: 真实类标
:param predicted_label: 模型预测的类标
:return: 准确率(百分制)
"""
correct_count = 0
for i in range(len(actual_label)):
if actual_label[i] == predicted_label[i]:
correct_count += 1
return correct_count / float(len(actual_label)) * 100.0
def predict(network, row):
"""使用模型对当前输入的数据进行预测
:param network: 神经网络
:param row: 一个数据样本
:return: 预测结果
"""
outputs = forward_propagate(network, row)
return outputs.index(max(outputs))
最后我们运行代码:
if __name__ == "__main__":
file_path = './iris.csv'
# 参数设置
l_rate = 0.2 # 学习率
epochs = 300 # 迭代训练的次数
n_hidden = 5 # 隐藏层神经元个数
n_train_data = 130 # 训练集的大小(总共150条数据,训练集130条,验证集20条)
# 加载数据并划分训练集和验证集
train_data, val_data = load_dataset(file_path, n_train_data)
# 训练模型
network = train(train_data, l_rate, epochs, n_hidden, val_data)
训练过程如图3所示: