Multi-Hop Graph Relation Networks (EMNLP 2020)
This is the repo of our EMNLP'20 paper:
Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering
Yanlin Feng*, Xinyue Chen*, Bill Yuchen Lin, Peifeng Wang, Jun Yan and Xiang Ren.
EMNLP 2020.
*=equal contritbution
This repository also implements other graph encoding models for question answering (including vanilla LM finetuning).
- RelationNet
- R-GCN
- KagNet
- GConAttn
- KVMem
- MHGRN (or. MultiGRN)
Each model supports the following text encoders:
- LSTM
- GPT
- BERT
- XLNet
- RoBERTa
Resources
We provide preprocessed ConceptNet and pretrained entity embeddings for your own usage. These resources are independent of the source code.
Note that the following reousrces can be download here.
ConceptNet (5.6.0)
Description | Downloads | Notes |
---|---|---|
Entity Vocab | entity-vocab | one entity per line, space replaced by '_' |
Relation Vocab | relation-vocab | one relation per line, merged |
ConceptNet (CSV format) | conceptnet-5.6.0-csv | English tuples extracted from the full conceptnet with merged relations |
ConceptNet (NetworkX format) | conceptnet-5.6.0-networkx | NetworkX pickled format, pruned by filtering out stop words |
Entity Embeddings (Node Features)
Entity embeddings are packed into a matrix of shape (#ent, dim) and stored in numpy format. Use np.load
to read the file. You may need to download the vocabulary files first.
Embedding Model | Dimensionality | Description | Downloads |
---|---|---|---|
TransE | 100 | Obtained using OpenKE with optim=sgd, lr=1e-3, epoch=1000 | entities relations |
NumberBatch | 300 | https://github.com/commonsense/conceptnet-numberbatch | entities |
BERT-based | 1024 | Provided by Zhengwei | entities |
Dependencies
- Python >= 3.6
- PyTorch == 1.1.0
- transformers == 2.0.0
- tqdm
- dgl == 0.3.1 (GPU version)
- networkx == 2.3
Run the following commands to create a conda environment (assume CUDA10):
conda create -n krqa python=3.6 numpy matplotlib ipython
source activate krqa
conda install pytorch=1.1.0 torchvision cudatoolkit=10.0 -c pytorch
pip install dgl-cu100==0.3.1
pip install transformers==2.0.0 tqdm networkx==2.3 nltk spacy==2.1.6
python -m spacy download en
Usage
1. Download Data
First, you need to download all the necessary data in order to train the model:
git clone https://github.com/INK-USC/MHGRN.git
cd MHGRN
bash scripts/download.sh
The script will:
- Download the CommonsenseQA dataset
- Download ConceptNet
- Download pretrained TransE embeddings
2. Preprocess
To preprocess the data, run:
python preprocess.py
By default, all available CPU cores will be used for multi-processing in order to speed up the process. Alternatively, you can use "-p" to specify the number of processes to use:
python preprocess.py -p 20
The script will:
- Convert the original datasets into .jsonl files (stored in
data/csqa/statement/
) - Extract English relations from ConceptNet, merge the original 42 relation types into 17 types
- Identify all mentioned concepts in the questions and answers
- Extract subgraphs for each q-a pair
The preprocessing procedure takes approximately 3 hours on a 40-core CPU server. Most intermediate files are in .jsonl or .pk format and stored in various folders. The resulting file structure will look like:
.
├── README.md
└── data/
├── cpnet/ (prerocessed ConceptNet)
├── glove/ (pretrained GloVe embeddings)
├── transe/ (pretrained TransE embeddings)
└── csqa/
├── train_rand_split.jsonl
├── dev_rand_split.jsonl
├── test_rand_split_no_answers.jsonl
├── statement/ (converted statements)
├── grounded/ (grounded entities)
├── paths/ (unpruned/pruned paths)
├── graphs/ (extracted subgraphs)
├── ...
3. Hyperparameter Search (optional)
To search the parameters for RoBERTa-Large on CommonsenseQA:
bash scripts/param_search_lm.sh csqa roberta-large
To search the parameters for BERT+RelationNet on CommonsenseQA:
bash scripts/param_search_rn.sh csqa bert-large-uncased
4. Training
Each graph encoding model is implemented in a single script:
Graph Encoder | Script | Description |
---|---|---|
None | lm.py | w/o knowledge graph |
Relation Network | rn.py | |
R-GCN | rgcn.py | Use --gnn_layer_num and --num_basis to specify #layer and #basis |
KagNet | kagnet.py | Adapted from https://github.com/INK-USC/KagNet, still tuning |
Gcon-Attn | gconattn.py | |
KV-Memory | kvmem.py | |
MHGRN | grn.py |
Some important command line arguments are listed as follows (run python {lm,rn,rgcn,...}.py -h
for a complete list):
Arg | Values | Description | Notes |
---|---|---|---|
--mode |
{train, eval, ...} | Training or Evaluation | default=train |
-enc, --encoder |
{lstm, openai-gpt, bert-large-unased, roberta-large, ....} | Text Encoer | Model names (except for lstm) are the ones used by huggingface-transformers, default=bert-large-uncased |
--optim |
{adam, adamw, radam} | Optimizer | default=radam |
-ds, --dataset |
{csqa, obqa} | Dataset | default=csqa |
-ih, --inhouse |
{0, 1} | Run In-house Split | default=1, only applicable to CSQA |
--ent_emb |
{transe, numberbatch, tzw} | Entity Embeddings | default=tzw (BERT-based node features) |
-sl, --max_seq_len |
{32, 64, 128, 256} | Maximum Sequence Length | Use 128 or 256 for datasets that contain long sentences! default=64 |
-elr, --encoder_lr |
{1e-5, 2e-5, 3e-5, 6e-5, 1e-4} | Text Encoder LR | dataset specific and text encoder specific, default values in utils/parser_utils.py |
-dlr, --decoder_lr |
{1e-4, 3e-4, 1e-3, 3e-3} | Graph Encoder LR | dataset specific and model specific, default values in {model}.py |
--lr_schedule |
{fixed, warmup_linear, warmup_constant} | Learning Rate Schedule | default=fixed |
-me, --max_epochs_before_stop |
{2, 4, 6} | Early Stopping Patience | default=2 |
--unfreeze_epoch |
{0, 3} | Freeze Text Encoder for N epochs | model specific |
-bs, --batch_size |
{16, 32, 64} | Batch Size | default=32 |
--save_dir |
str | Checkpoint Directory | model specific |
--seed |
{0, 1, 2, 3} | Random Seed | default=0 |
For example, run the following command to train a RoBERTa-Large model on CommonsenseQA:
python lm.py --encoder roberta-large --dataset csqa
To train a RelationNet with BERT-Large-Uncased as the encoder:
python rn.py --encoder bert-large-uncased
To reproduce the reported results of MultiGRN on CommonsenseQA official set:
bash scripts/run_grn_csqa.sh
5. Evaluation
To evaluate a trained model (you need to specify --save_dir
if the checkpoint is not stored in the default directory):
python {lm,rn,rgcn,...}.py --mode eval [ --save_dir path/to/directory/ ]
Use Your Own Dataset
- Convert your dataset to
{train,dev,test}.statement.jsonl
in .jsonl format (seedata/csqa/statement/train.statement.jsonl
) - Create a directory in
data/{yourdataset}/
to store the .jsonl files - Modify
preprocess.py
and perform subgraph extraction for your data - Modify
utils/parser_utils.py
to support your own dataset - Tune
encoder_lr
,decoder_lr
and other important hyperparameters, modifyutils/parser_utils.py
and{model}.py
to record the tuned hyperparameters