• Stars
    star
    919
  • Rank 49,319 (Top 1.0 %)
  • Language
  • License
    MIT License
  • Created over 3 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

ספר מלא בעברית על למידת מכונה ולמידה עמוקה

Deep-Learning-in-Hebrew

למידת מכונה ולמידה עמוקה בעברית

Add a star if the repository helped you 😊

MDLH

For any issue please contact us at [email protected].

People

Authors:

Chapter Authors:

Contributors:

Citation

If you find this book useful in your research work, please consider citing:

@InProceedings{MDLH,
author = {Raviv, Avraham and Erlihson, Mike},
booktitle = {Machine and Deep learning in Hebrew},
year = {2021}
}

Table of Content

1. Introducion to Machine Learning

1.1 What is Machine Learning?

  • 1.1.1. The Basic Concept

  • 1.1.2. Data, Tasks and Learning

1.2. Applied Math

  • 1.2.1. Linear Algebra

  • 1.2.2. Calculus

  • 1.2.3. Probability

2. Machine Learning Algorithms

2.1. Supervised Learning Algorithms

  • 2.1.1. Support Vector Machines (SVM)

  • 2.1.2. Naïve Bayes

  • 2.1.3. K-nearest neighbors (K-NN)

  • 2.1.4. Quadratic\Linear Discriminant Analysis (QDA\LDA)

  • 2.1.5. Decision Trees

2.2. [Unsupervised Learning Algorithms]

  • 2.2.1. K-means

  • 2.2.2. Mixture Models

  • 2.2.3. Expectation–maximization (EM)

  • 2.2.4. Hierarchical Clustering

  • 2.2.5. Local Outlier Factor

2.3. [Dimensionally Reduction]

  • 2.3.1. Principal Components Analysis (PCA)

  • 2.3.2. t-distributed Stochastic Neighbor Embedding (t-SNE)

  • 2.3.3. Uniform Manifold Approximation and Projection (UMAP)

2.4. [Ensemble Learning]

  • 2.4.1. Introduction to Ensemble Learning

  • 2.4.2. Bagging

  • 2.4.3. Boosting

3. Linear Neural Networks (Regression problems)

3.1. Linear Regression

  • 3.1.1. The Basic Concept

  • 3.1.2. Gradient Descent

  • 3.1.3. Regularization and Cross Validation

  • 3.1.4. Linear Regression as Classifier

3.2. Softmax Regression

  • 3.2.1. Logistic Regression

  • 3.2.2. Cross Entropy and Gradient Descent

  • 3.2.3. Optimization

  • 3.2.4. SoftMax Regression – Multiclass Logistic Regression

  • 3.2.5. SoftMax Regression as Neural Network

4. Deep Neural Networks

4.1. MLP – Multilayer Perceptrons

  • 4.1.1. From a Single Neuron to Deep Neural Network

  • 4.1.2. Activation Function

  • 4.1.3. Xor

4.2. Computational Graphs and Propagation

  • 4.2.1. Computational Graphs

  • 4.2.2. Forward and Backward propagation

  • 4.2.3. Back Propagation and Stochastic Gradient Descent

4.3. Optimization

  • 4.3.1. Data Normalization

  • 4.3.2. Weight Initialization

  • 4.3.3. Batch Normalization

  • 4.3.4. Mini Batch

  • 4.3.5. Gradient Descent Optimization Algorithms

4.4. Generalization

  • 4.4.1. Regularization

  • 4.4.2. Weight Decay

  • 4.4.3. Model Ensembles and Drop Out

  • 4.4.4. Data Augmentation

5. Convolutional Neural Networks

5.1. Convolutional Layers

  • 5.1.1. From Fully-Connected Layers to Convolutions

  • 5.1.2. Padding, Stride and Dilation

  • 5.1.3. Pooling

  • 5.1.4. Training

  • 5.1.5. Convolutional Neural Networks (LeNet)

5.2. CNN Architectures

  • 5.2.1. AlexNet

  • 5.2.2. VGG

  • 5.2.3. GoogleNet

  • 5.2.4. Residual Networks (ResNet)

  • 5.2.5. Densely Connected Networks (DenseNet)

  • 5.2.6. U-Net

  • 5.2.7. Transfer Learning

6. Recurrent Neural Networks

6.1. Sequence Models

  • 6.1.1. Recurrent Neural Networks

  • 6.1.2. Learning Parameters

6.2. RNN Architectures

  • 6.2.1. Long Short-Term Memory (LSTM)

  • 6.2.2. Gated Recurrent Units (GRU)

  • 6.2.3. Deep RNN

  • 6.2.4. Bidirectional RNN

  • 6.2.5. Sequence to Sequence Learning

7. Deep Generative Models

7.1. Variational AutoEncoder (VAE)

  • 7.1.1. Dimensionality Reduction

  • 7.1.2. Autoencoders (AE)

  • 7.1.3. Variational AutoEncoders (VAE)

7.2. Generative Adversarial Networks (GANs)

  • 7.2.1. Generator and Discriminator

  • 7.2.2. DCGAN

  • 7.2.3. Conditional GAN (cGAN)

  • 7.2.4. Pix2Pix

  • 7.2.5. CycleGAN

  • 7.2.6. Progressively Growing (ProGAN)

  • 7.2.7. StyleGAN

  • 7.2.8. Wasserstein GAN

7.3. Auto-Regressive Generative Models

  • 7.3.1. PixelRNN

  • 7.3.2. PixelCNN

  • 7.3.3. Gated PixelCNN

  • 7.3.4. PixelCNN++

8. Attention Mechanism

8.1. Sequence to Sequence Learning and Attention

  • 8.1.1. Attention in Seq2Seq Models

  • 8.1.2. Bahdanau Attention and Luong Attention

8.2. Transformer

  • 8.2.1. Positional Encoding

  • 8.2.2. Self-Attention Layer

  • 8.2.3. Multi Head Attention

  • 8.2.4. Transformer End to End

  • 8.2.5. Transformer Applications

9. Computer Vision

9.1. Object Detection

  • 9.1.1. Introduction to Object Detection

  • 9.1.2. R-CNN

  • 9.1.3. You Only Look Once (YOLO)

  • 9.1.4. Single Shot Detector (SSD)

  • 9.1.5 Spatial Pyramid Pooling (SPP-net)

  • 9.1.6. Feature Pyramid Networks

  • 9.1.7. Deformable Convolutional Networks

  • 9.1.8. DE:TR: Object Detection with Transformers

9.2. Segmentation

  • 9.2.1. Semantic Segmentation Vs. Instance Segmentation

  • 9.2.2. SegNet neural network

  • 9.2.3. Atrous Convolutions

  • 9.2.4. Atrous Spatial Pyramidal Pooling

  • 9.2.5. Conditional Random Fields usage for improving final output

  • 9.2.6. See More Than Once -- Kernel-Sharing Atrous Convolution

9.3. Face Recognition and Pose Estimation

  • 9.3.1. Face Recognition

  • 9.3.2. Pose Estimation

9.5. Few-Shot Learning

  • 9.5.1. The Problem

  • 9.5.2 Metric Learning

  • 9.5.3. Meta-Learning (Learning-to-Learn)

  • 9.5.4. Data Augmentation

  • 9.5.5. Zero-Shot Learning

10. Natural Language Process

10.1. Language Models and Word Representation

  • 10.1.1. Basic Language Models

  • 10.1.2. Word Representation (Vectors) and Word Embeddings

  • 10.1.3. COntextual Embeddings

11. Reinforcement Learning

11.1. Introduction to RL

  • 11.1.1. Markov Decision Process (MDP) and RL

  • 11.1.2. Planning

  • 11.1.3. Learning Algorithms

11.2. Model Free Prediction

  • 11.2.1. Monte-Carlo (MC) Policy Evaluation

  • 11.2.2. Temporal Difference (TD) – Bootstrapping

  • 11.2.3. TD(λ)

11.3. Model Free Control

  • 11.3.1. SARSA - on-policy TD control

  • 11.3.2. Q-Learning

  • 11.3.3. Function Approximation

  • 11.3.4. Policy-Based RL

  • 11.3.5. Actor-Critic

11.4. Model Based Control

  • 11.4.1. Known Model – Dyna algorithm

  • 11.4.2. Known Model – Tree Search

  • 11.4.3. Planning for Continuous Action Space

11.5. Exploration and Exploitation

  • 11.5.1. N-armed bandits

  • 11.5.2. Full MDP

11.6. Learning From an Expert

  • 11.6.1. Imitation Learning

  • 11.6.2. Inverse RL

11.7. Partially Observed Markov Decision Process (POMDP)

12. Graph Neural Networks

12.1. Introduction to Graphs

  • 12.1.1. Represent Data as a Graph

  • 12.1.2. Tasks on Graphs

  • 12.1.3. The challenge of learning graphs


References

כל הזכויות שמורות Ⓒ