Feature
- VITS text-to-speech
- VITS voice conversion
- HuBert-soft VITS
- W2V2 VITS / emotional-vits dimensional emotion model
- Support for loading multiple models
- Automatic language recognition and processing,set the scope of language type recognition according to model's cleaner,support for custom language type range
- Customize default parameters
- Long text batch processing
- GPU accelerated inference
- SSML (Speech Synthesis Markup Language) work in progress...
Update Logs
2023.6.5
Replace the library used for audio encoding, add support for the FLAC format, and enhance support for reading simple mathematical formulas in Chinese.
2023.5.24
Added api dimensional_emotion,load mutiple npy from folder.Docker add linux/arm64 and linux/arm64/v8 platforms
2023.5.15
Added english_cleaner. To use it, you need to install espeak separately.
2023.5.12
Added support for SSML, but still needs improvement. Refactored some functions and changed "speaker_id" to "id" in hubert_vits.
2023.5.2
Added support for the w2v2-vits/emotional-vits model, updated the speakers mapping table, and added support for the languages corresponding to the model.
2023.4.23
Add API Key authentication, disabled by default, needs to be enabled in config.py.
2023.4.17
Added the feature that the cleaner for a single language needs to be annotated to clean, and added GPU acceleration for inference, but the GPU inference environment needs to be manually installed.
2023.4.12
Renamed the project from MoeGoe-Simple-API to vits-simple-api, added support for batch processing of long texts, and added a segment threshold "max" for long texts.
2023.4.7
Added a configuration file to customize default parameters. This update requires manually updating config.py. See config.py for specific usage.
2023.4.6
Added the "auto" option for automatically recognizing the language of the text. Modified the default value of the "lang" parameter to "auto". Automatic recognition still has some defects, please choose manually.
Unified the POST request type as multipart/form-data.
demo
Please note that different IDs may support different languages.speakers
https://artrajz-vits-simple-api.hf.space/voice/vits?text=你好,こんにちは&id=164
https://artrajz-vits-simple-api.hf.space/voice/vits?text=Difficult the first time, easy the second.&id=4
- excited:
https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=111
- whispered:
https://artrajz-vits-simple-api.hf.space/w2v2-vits?text=こんにちは&id=3&emotion=2077
ssml.mov
Deploy
Docker
Docker image pull script
bash -c "$(wget -O- https://raw.githubusercontent.com/Artrajz/vits-simple-api/main/vits-simple-api-installer-latest.sh)"
- The platforms currently supported by Docker images are
linux/amd64
andlinux/arm64
. - After a successful pull, the vits model needs to be imported before use. Please follow the steps below to import the model.
Download VITS model
Put the model into /usr/local/vits-simple-api/Model
Folder structure
│ hubert-soft-0d54a1f4.pt
│ model.onnx
│ model.yaml
│
├─g
│ config.json
│ G_953000.pth
│
├─louise
│ 360_epochs.pth
│ config.json
│
├─Nene_Nanami_Rong_Tang
│ 1374_epochs.pth
│ config.json
│
├─Zero_no_tsukaima
│ 1158_epochs.pth
│ config.json
│
└─npy
25ecb3f6-f968-11ed-b094-e0d4e84af078.npy
all_emotions.npy
Modify model path
Modify in /usr/local/vits-simple-api/config.py
config.py
# Fill in the model path here
MODEL_LIST = [
# VITS
[ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
[ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
[ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
# HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
[ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
# W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
[ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft model
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# load single npy: ABS_PATH+"/all_emotions.npy
# load mutiple npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# load mutiple npy from folder: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: Need to have both `model.onnx` and `model.yaml` files in the same path.
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"
Startup
docker compose up -d
Or execute the pull script again
Image update
Run the docker image pull script again
Virtual environment deployment
Clone
git clone https://github.com/Artrajz/vits-simple-api.git
Download python dependencies
A python virtual environment is recommended,use python >= 3.9
pip install -r requirements.txt
Fasttext may not be installed on windows, you can install it with the following command,or download wheels here
#python3.10 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp310-cp310-win_amd64.whl
#python3.9 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp39-cp39-win_amd64.whl
Download VITS model
Put the model into /path/to/vits-simple-api/Model
Folder structure
│ hubert-soft-0d54a1f4.pt
│ model.onnx
│ model.yaml
│
├─g
│ config.json
│ G_953000.pth
│
├─louise
│ 360_epochs.pth
│ config.json
│
├─Nene_Nanami_Rong_Tang
│ 1374_epochs.pth
│ config.json
│
├─Zero_no_tsukaima
│ 1158_epochs.pth
│ config.json
│
└─npy
25ecb3f6-f968-11ed-b094-e0d4e84af078.npy
all_emotions.npy
Modify model path
Modify in /path/to/vits-simple-api/config.py
config.py
# Fill in the model path here
MODEL_LIST = [
# VITS
[ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
[ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
[ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
# HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
[ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
# W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
[ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft model
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# load single npy: ABS_PATH+"/all_emotions.npy
# load mutiple npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# load mutiple npy from folder: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: Need to have both `model.onnx` and `model.yaml` files in the same path.
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"
Startup
python app.py
GPU accelerated
Windows
Install CUDA
Check the highest version of CUDA supported by your graphics card:
nvidia-smi
Taking CUDA 11.7 as an example, download it from the official website
Install GPU version of PyTorch
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
You can find the corresponding command for the version you need on the official website
Linux
The installation process is similar, but I don't have the environment to test it.
Openjtalk Installation Issue
If you are using an arm64 architecture platform, you may encounter some issues during installation due to the lack of arm64-compatible whl files on the official PyPI website. In such cases, you can use the whl file I have built to install Openjtalk.
pip install openjtalk==0.3.0.dev2 --index-url https://pypi.artrajz.cn/simple
Alternatively, you can manually build a whl file by following the instructions in this tutorial.
API
GET
speakers list
-
GET http://127.0.0.1:23456/voice/speakers
Returns the mapping table of role IDs to speaker names.
voice vits
-
GET http://127.0.0.1:23456/voice/vits?text=text
Default values are used when other parameters are not specified.
-
GET http://127.0.0.1:23456/voice/vits?text=[ZH]text[ZH][JA]text[JA]&lang=mix
When lang=mix, the text needs to be annotated.
-
GET http://127.0.0.1:23456/voice/vits?text=text&id=142&format=wav&lang=zh&length=1.4
The text is "text", the role ID is 142, the audio format is wav, the text language is zh, the speech length is 1.4, and the other parameters are default.
check
POST
- python
import re
import requests
import os
import random
import string
from requests_toolbelt.multipart.encoder import MultipartEncoder
abs_path = os.path.dirname(__file__)
base = "http://127.0.0.1:23456"
# 映射表
def voice_speakers():
url = f"{base}/voice/speakers"
res = requests.post(url=url)
json = res.json()
for i in json:
print(i)
for j in json[i]:
print(j)
return json
# 语音合成 voice vits
def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"max": str(max)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# 语音转换 hubert-vits
def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
"id": str(id),
"format": format,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/hubert-vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# 维度情感模型 w2v2-vits
def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50, emotion=0):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"max": str(max),
"emotion": str(emotion)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/w2v2-vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# 语音转换 同VITS模型内角色之间的音色转换
def voice_conversion(upload_path, original_id, target_id):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
"original_id": str(original_id),
"target_id": str(target_id),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/conversion"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
def voice_ssml(ssml):
fields = {
"ssml": ssml,
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/ssml"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
def voice_dimensional_emotion(upload_path):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/dimension-emotion"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
API KEY
Set API_KEY_ENABLED = True
in config.py
to enable API key authentication. The API key is API_KEY = "api-key"
.
After enabling it, you need to add the api_key
parameter in GET requests and add the X-API-KEY
parameter in the header for POST requests.
Parameter
VITS
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
Synthesized text | text | true | str | Text needed for voice synthesis. | |
Speaker ID | id | false | 0 | int | The speaker ID. |
Audio format | format | false | wav | str | Support for wav,ogg,silk,mp3,flac |
Text language | lang | false | auto | str | The language of the text to be synthesized. Available options include auto, zh, ja, and mix. When lang=mix, the text should be wrapped in [ZH] or [JA].The default mode is auto, which automatically detects the language of the text |
Audio length | length | false | 1.0 | float | Adjusts the length of the synthesized speech, which is equivalent to adjusting the speed of the speech. The larger the value, the slower the speed. |
Noise | noise | false | 0.33 | float | Sample noise, controlling the randomness of the synthesis. |
SDP noise | noisew | false | 0.4 | float | Stochastic Duration Predictor noise, controlling the length of phoneme pronunciation. |
Segmentation threshold | max | false | 50 | int | Divide the text into paragraphs based on punctuation marks, and combine them into one paragraph when the length exceeds max. If max<=0, the text will not be divided into paragraphs. |
Streaming response | streaming | false | false | bool | Streamed synthesized speech with faster initial response. |
VITS voice conversion
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
Uploaded Audio | upload | true | file | The audio file to be uploaded. It should be in wav or ogg | |
Source Role ID | original_id | true | int | The ID of the role used to upload the audio file. | |
Target Role ID | target_id | true | int | The ID of the target role to convert the audio to. |
HuBert-VITS
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
Uploaded Audio | upload | true | file | The audio file to be uploaded. It should be in wav or ogg format. | |
Target speaker ID | id | true | int | The target speaker ID. | |
Audio format | format | true | str | wav,ogg,silk | |
Audio length | length | true | float | Adjusts the length of the synthesized speech, which is equivalent to adjusting the speed of the speech. The larger the value, the slower the speed. | |
Noise | noise | true | float | Sample noise, controlling the randomness of the synthesis. | |
sdp noise | noisew | true | float | Stochastic Duration Predictor noise, controlling the length of phoneme pronunciation. |
W2V2-VITS
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
Synthesized text | text | true | str | Text needed for voice synthesis. | |
Speaker ID | id | false | 0 | int | The speaker ID. |
Audio format | format | false | wav | str | Support for wav,ogg,silk,mp3,flac |
Text language | lang | false | auto | str | The language of the text to be synthesized. Available options include auto, zh, ja, and mix. When lang=mix, the text should be wrapped in [ZH] or [JA].The default mode is auto, which automatically detects the language of the text |
Audio length | length | false | 1.0 | float | Adjusts the length of the synthesized speech, which is equivalent to adjusting the speed of the speech. The larger the value, the slower the speed. |
Noise | noise | false | 0.33 | float | Sample noise, controlling the randomness of the synthesis. |
SDP noise | noisew | false | 0.4 | float | Stochastic Duration Predictor noise, controlling the length of phoneme pronunciation. |
Segmentation threshold | max | false | 50 | int | Divide the text into paragraphs based on punctuation marks, and combine them into one paragraph when the length exceeds max. If max<=0, the text will not be divided into paragraphs. |
Dimensional emotion | emotion | false | 0 | int | The range depends on the emotion reference file in npy format, such as the range of the innnky's model all_emotions.npy, which is 0-5457. |
Dimensional emotion
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
Uploaded Audio | upload | true | file | Return the npy file that stores the dimensional emotion vectors. |
SSML (Speech Synthesis Markup Language)
Supported Elements and Attributes
speak
Element
Attribute | Instruction | Is must |
---|---|---|
id | Default value is retrieved from config.py |
false |
lang | Default value is retrieved from config.py |
false |
length | Default value is retrieved from config.py |
false |
noise | Default value is retrieved from config.py |
false |
noisew | Default value is retrieved from config.py |
false |
max | Splits text into segments based on punctuation marks. When the sum of segment lengths exceeds max , it is treated as one segment. max<=0 means no segmentation. The default value is 0. |
false |
model | Default is vits . Options: w2v2-vits , emotion-vits |
false |
emotion | Only effective when using w2v2-vits or emotion-vits . The range depends on the npy emotion reference file. |
false |
voice
Element
Higher priority than speak
.
Attribute | Instruction | Is must |
---|---|---|
id | Default value is retrieved from config.py |
false |
lang | Default value is retrieved from config.py |
false |
length | Default value is retrieved from config.py |
false |
noise | Default value is retrieved from config.py |
false |
noisew | Default value is retrieved from config.py |
false |
max | Splits text into segments based on punctuation marks. When the sum of segment lengths exceeds max , it is treated as one segment. max<=0 means no segmentation. The default value is 0. |
false |
model | Default is vits . Options: w2v2-vits , emotion-vits |
false |
emotion | Only effective when using w2v2-vits or emotion-vits |
false |
break
Element
Attribute | Instruction | Is must |
---|---|---|
strength | x-weak, weak, medium (default), strong, x-strong | false |
time | The absolute duration of a pause in seconds (such as 2s ) or milliseconds (such as 500ms ). Valid values range from 0 to 5000 milliseconds. If you set a value greater than the supported maximum, the service will use 5000ms . If the time attribute is set, the strength attribute is ignored. |
false |
Strength | Relative Duration |
---|---|
x-weak | 250 ms |
weak | 500 ms |
medium | 750 ms |
strong | 1000 ms |
x-strong | 1250 ms |
Example
<speak lang="zh" format="mp3" length="1.2">
<voice id="92" >这几天心里颇不宁静。</voice>
<voice id="125">今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。</voice>
<voice id="142">月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;</voice>
<voice id="98">妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。</voice>
<voice id="120">我悄悄地披了大衫,带上门出去。</voice><break time="2s"/>
<voice id="121">沿着荷塘,是一条曲折的小煤屑路。</voice>
<voice id="122">这是一条幽僻的路;白天也少人走,夜晚更加寂寞。</voice>
<voice id="123">荷塘四面,长着许多树,蓊蓊郁郁的。</voice>
<voice id="124">路的一旁,是些杨柳,和一些不知道名字的树。</voice>
<voice id="125">没有月光的晚上,这路上阴森森的,有些怕人。</voice>
<voice id="126">今晚却很好,虽然月光也还是淡淡的。</voice><break time="2s"/>
<voice id="127">路上只我一个人,背着手踱着。</voice>
<voice id="128">这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。</voice>
<voice id="129">我爱热闹,也爱冷静;<break strength="x-weak"/>爱群居,也爱独处。</voice>
<voice id="130">像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。</voice>
<voice id="131">白天里一定要做的事,一定要说的话,现在都可不理。</voice>
<voice id="132">这是独处的妙处,我且受用这无边的荷香月色好了。</voice>
</speak>
Communication
Learning and communication,now there is only Chinese QQ group
Acknowledgements
- vits:https://github.com/jaywalnut310/vits
- MoeGoe:https://github.com/CjangCjengh/MoeGoe
- emotional-vits:https://github.com/innnky/emotional-vits
- vits-uma-genshin-honkai:https://huggingface.co/spaces/zomehwh/vits-uma-genshin-honkai
- vits_chinese:https://github.com/PlayVoice/vits_chinese