AutoAlignV2
Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection
Zehui Chen, Zhenyu Li, Shiquan Zhang, Liangji Fang, Qinhong Jiang, Feng Zhao.
Performance
nuScenes Val set
Model | config | mAP | NDS |
---|---|---|---|
Baseline 1/8 subset | - | - | |
AutoAlignV2 1/8 subset | 58.5 | 63.2 |
nuScenes Test Leaderboard
Model | mAP | NDS |
---|---|---|
AutoAlign | 65.8 | 70.9 |
AutoAlignV2 | 68.4 | 72.4 |
Note
The code is released without rechecking. We will clean up and recheck the code recently.
Get Started
Install Deformable Ops from DeformDETR
cd ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py
Prepare Dataset
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --version v1.0
Train Model
./tools/dist_train.sh aav2_cfg/centerpoint_voxel_nus_8subset_bs4_img1_nuimg_detach_deform_multipts.py 8
Test Model
./tools/dist_test.sh aav2_cfg/centerpoint_voxel_nus_8subset_bs4_img1_nuimg_detach_deform_multipts.py work_dirs/centerpoint_voxel_nus_8subset_bs4_img1_nuimg_detach_deform_multipts/epoch_20.pth 8 --eval bbox
Pretrained Model Weights
Model | Weights |
---|---|
Pretrained YOLOX-640 | https://drive.google.com/file/d/1DuA16ocF8Dmfl0nC3NNSKG_Yqq-aXuLH/view?usp=sharing |
Pretrained YOLOX-800 | https://drive.google.com/file/d/1YPSjG38qXrV8gYlq5FuhQCjfRIUvhaju/view?usp=sharing |
AutoAlignV2 1/8 subset | https://drive.google.com/file/d/1F_B4bq5Y6QdkUHQbqeLaEGl-IZHHe1WB/view?usp=sharing |
Citation
If you find our work useful for your research, please consider citing the paper
@article{chen2022autoalignv2,
title={AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection},
author={Chen, Zehui and Li, Zhenyu and Zhang, Shiquan and Fang, Liangji and Jiang, Qinhong and Zhao, Feng},
journal={ECCV},
year={2022}
}