• Stars
    star
    1,083
  • Rank 42,742 (Top 0.9 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 5 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A coding-free framework built on PyTorch for reproducible deep learning studies. 🏆20 knowledge distillation methods presented at CVPR, ICLR, ECCV, NeurIPS, ICCV, etc are implemented so far. 🎁 Trained models, training logs and configurations are available for ensuring the reproducibiliy and benchmark.

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation

PyPI version Build Status GitHub Discussions DOI:10.1007/978-3-030-76423-4_3

torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, that often change the interface of the forward, but instead specify the module path(s) in the yaml file. Refer to this paper for more details.

In addition to knowledge distillation, this framework helps you design and perform general deep learning experiments (WITHOUT coding) for reproducible deep learning studies. i.e., it enables you to train models without teachers simply by excluding teacher entries from a declarative yaml config file. You can find such examples below and in configs/sample/.

When you refer to torchdistill in your paper, please cite this paper instead of this GitHub repository.
If you use torchdistill as part of your work, your citation is appreciated and motivates me to maintain and upgrade this framework!

Important Notice

To run the scripts in examples/, please use a PyPI packages (i.e., pip3 install torchdistill) instead of local package files in torchdistill/ because I am preparing for next major release, and the example scripts have not been synced with the local package files in torchdistill/
On top of that, you can add your modules (models, loss functions, datasets, etc) without editing code in the local package torchdistill/ (See Discussions for more details)

While waiting for the next major release of torchdistill, I strongly suggest that you

Forward hook manager

Using ForwardHookManager, you can extract intermediate representations in model without modifying the interface of its forward function.
This example notebook Open In Colab will give you a better idea of the usage such as knowledge distillation and analysis of intermediate representations.

1 experiment → 1 declarative PyYAML config file

In torchdistill, many components and PyTorch modules are abstracted e.g., models, datasets, optimizers, losses, and more! You can define them in a declarative PyYAML config file so that can be seen as a summary of your experiment, and in many cases, you will NOT need to write Python code at all. Take a look at some configurations available in configs/. You'll see what modules are abstracted and how they are defined in a declarative PyYAML config file to design an experiment.

Top-1 validation accuracy for ILSVRC 2012 (ImageNet)

T: ResNet-34* Pretrained KD AT FT CRD Tf-KD SSKD L2 PAD-L2 KR
S: ResNet-18 69.76* 71.37 70.90 71.56 70.93 70.52 70.09 71.08 71.71 71.64
Original work N/A N/A 70.70 71.43** 71.17 70.42 71.62 70.90 71.71 71.61

* The pretrained ResNet-34 and ResNet-18 are provided by torchvision.
** FT is assessed with ILSVRC 2015 in the original work.
For the 2nd row (S: ResNet-18), most of the results are reported in this paper, and their checkpoints (trained weights), configuration and log files are available, and the configurations reuse the hyperparameters such as number of epochs used in the original work except for KD.

Examples

Executable code can be found in examples/ such as

For CIFAR-10 and CIFAR-100, some models are reimplemented and available as pretrained models in torchdistill. More details can be found here.

Some Transformer models fine-tuned by torchdistill for GLUE tasks are available at Hugging Face Model Hub. Sample GLUE benchmark results and details can be found here.

Google Colab Examples

The following examples are available in demo/. Note that these examples are for Google Colab users. Usually, examples/ would be a better reference if you have your own GPU(s).

CIFAR-10 and CIFAR-100

  • Training without teacher models Open In Colab
  • Knowledge distillation Open In Colab

GLUE

  • Fine-tuning without teacher models Open In Colab
  • Knowledge distillation Open In Colab

These examples write out test prediction files for you to see the test performance at the GLUE leaderboard system.

PyTorch Hub

If you find models on PyTorch Hub or GitHub repositories supporting PyTorch Hub, you can import them as teacher/student models simply by editing a declarative yaml config file.

e.g., If you use a pretrained ResNeSt-50 available in huggingface/pytorch-image-models (aka timm) as a teacher model for ImageNet dataset, you can import the model via PyTorch Hub with the following entry in your declarative yaml config file.

models:
  teacher_model:
    name: 'resnest50d'
    repo_or_dir: 'huggingface/pytorch-image-models'
    kwargs:
      num_classes: 1000
      pretrained: True

How to setup

  • Python >= 3.7
  • pipenv (optional)

Install by pip/pipenv

pip3 install torchdistill
# or use pipenv
pipenv install torchdistill

Install from this repository (not recommended)

git clone https://github.com/yoshitomo-matsubara/torchdistill.git
cd torchdistill/
pip3 install -e .
# or use pipenv
pipenv install "-e ."

Issues / Questions / Requests

The documentation is work-in-progress. In the meantime, feel free to create an issue if you find a bug.
If you have either a question or feature request, start a new discussion here. Please make sure the issue/question/request has not been addressed yet by searching through the issues and discussions.

Citation

If you use torchdistill in your research, please cite the following paper.
[Paper] [Preprint]

@inproceedings{matsubara2021torchdistill,
  title={{torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation}},
  author={Matsubara, Yoshitomo},
  booktitle={International Workshop on Reproducible Research in Pattern Recognition},
  pages={24--44},
  year={2021},
  organization={Springer}
}

Acknowledgments

Since June 2022, this project has been supported by JetBrain's Free License Programs (Open Source).
PyCharm logo

References