• Stars
    star
    835
  • Rank 54,605 (Top 2 %)
  • Language
    Python
  • License
    Other
  • Created over 5 years ago
  • Updated almost 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation

[Project] [Paper] [arXiv] [Home]

PWC

Official implementation of FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
A Faster, Stronger and Lighter framework for semantic segmentation, achieving the state-of-the-art performance and more than 3x acceleration.

@inproceedings{wu2019fastfcn,
  title     = {FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation},
  author    = {Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu Yizhou},
  booktitle = {arXiv preprint arXiv:1903.11816},
  year = {2019}
}

Contact: Hui-Kai Wu ([email protected])

Update

2020-04-15: Now support inference on a single image !!!

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m experiments.segmentation.test_single_image --dataset [pcontext|ade20k] \
    --model [encnet|deeplab|psp] --jpu [JPU|JPU_X] \
    --backbone [resnet50|resnet101] [--ms] --resume {MODEL} --input-path {INPUT} --save-path {OUTPUT}

2020-04-15: New joint upsampling module is now available !!!

  • --jpu [JPU|JPU_X]: JPU is the original module in the arXiv paper; JPU_X is a pyramid version of JPU.

2020-02-20: FastFCN can now run on every OS with PyTorch>=1.1.0 and Python==3.*.*

  • Replace all C/C++ extensions with pure python extensions.

Version

  1. Original code, producing the results reported in the arXiv paper. [branch:v1.0.0]
  2. Pure PyTorch code, with torch.nn.DistributedDataParallel and torch.nn.SyncBatchNorm. [branch:latest]
  3. Pure Python code. [branch:master]

Overview

Framework

Joint Pyramid Upsampling (JPU)

Install

  1. PyTorch >= 1.1.0 (Note: The code is test in the environment with python=3.6, cuda=9.0)
  2. Download FastFCN
    git clone https://github.com/wuhuikai/FastFCN.git
    cd FastFCN
    
  3. Install Requirements
    nose
    tqdm
    scipy
    cython
    requests
    

Train and Test

PContext

python -m scripts.prepare_pcontext
Method Backbone mIoU FPS Model Scripts
EncNet ResNet-50 49.91 18.77
EncNet+JPU (ours) ResNet-50 51.05 37.56 GoogleDrive bash
PSP ResNet-50 50.58 18.08
PSP+JPU (ours) ResNet-50 50.89 28.48 GoogleDrive bash
DeepLabV3 ResNet-50 49.19 15.99
DeepLabV3+JPU (ours) ResNet-50 50.07 20.67 GoogleDrive bash
EncNet ResNet-101 52.60 (MS) 10.51
EncNet+JPU (ours) ResNet-101 54.03 (MS) 32.02 GoogleDrive bash

ADE20K

python -m scripts.prepare_ade20k

Training Set

Method Backbone mIoU (MS) Model Scripts
EncNet ResNet-50 41.11
EncNet+JPU (ours) ResNet-50 42.75 GoogleDrive bash
EncNet ResNet-101 44.65
EncNet+JPU (ours) ResNet-101 44.34 GoogleDrive bash

Training Set + Val Set

Method Backbone FinalScore (MS) Model Scripts
EncNet+JPU (ours) ResNet-50 GoogleDrive bash
EncNet ResNet-101 55.67
EncNet+JPU (ours) ResNet-101 55.84 GoogleDrive bash

Note: EncNet (ResNet-101) is trained with crop_size=576, while EncNet+JPU (ResNet-101) is trained with crop_size=480 for fitting 4 images into a 12G GPU.

Visual Results

Dataset Input GT EncNet Ours
PContext
ADE20K

More Visual Results

Acknowledgement

Code borrows heavily from PyTorch-Encoding.

More Repositories

1

DeepGuidedFilter

Official Implementation of Fast End-to-End Trainable Guided Filter, CVPR 2018
Python
823
star
2

FaceSwap

Swap face between two photos.
Python
691
star
3

GP-GAN

Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)
Python
448
star
4

TF-A2RL

The official implementation for A2-RL: Aesthetics Aware Rinforcement Learning for Automatic Image Cropping
Python
189
star
5

MSC

MSC: A Dataset for Macro-Management in StarCraft II
Python
138
star
6

PointCloudSuperResolution

Point Cloud Super Resolution with Adversarial Residual Graph Networks
Python
56
star
7

SparseMask

SparseMask: Differentiable Connectivity Learning for Dense Image Prediction.
Python
51
star
8

chainer-pix2pix

Chainer implementation for Image-to-Image Translation Using Conditional Adversarial Networks
Python
39
star
9

DeepCV

A set of RESTful APIs for computer vision and image processing with PyTorch and Flask.
HTML
8
star
10

chainer-neural-style

Chainer implementation for Neural Style Transfer & Fast Neural Style Transfer
Python
6
star
11

chainer-realism-cnn

Chainer implementation for realismCNN.
Python
6
star
12

a3c-deepmind-pytorch

Python
6
star
13

pytorch-a3c

Python
3
star
14

SIFT

SIFT in C++
C++
3
star
15

pytorch-dqn-universe

Deep Reinforcement learning with pytorch on universe platform
Python
2
star
16

GP-GAN-Project

Project Website for GP-GAN: Towards Realistic High-Resolution Image Blending
HTML
2
star
17

wuhuikai

2
star
18

CNN_CUT

Using CNN to boot up GrabCut
C++
2
star
19

FastFCNProject

HTML
1
star
20

ProximalGradientOptimization

Python source code & example for use proximal gradient optimization
Python
1
star
21

DeepDrone

A python library for running image (video) processing, computer vision, and deep learning algorithms on Tello (DJI drone).
Python
1
star
22

DeepJS

HTML
1
star
23

DeepGuidedFilterProject

HTML
1
star