• Stars
    star
    270
  • Rank 152,189 (Top 3 %)
  • Language
    MATLAB
  • License
    GNU General Publi...
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Public code for "Data-Efficient Decentralized Visual SLAM"

Data-Efficient Decentralized Visual SLAM

dslam

This is the code for the 2018 ICRA paper Data-Efficient Decentralized Visual SLAM by Titus Cieslewski, Siddharth Choudhary and Davide Scaramuzza:

@Article{Cieslewski18icra,
  author        = {Titus Cieslewski and Siddharth Choudhary and Davide
                  Scaramuzza},
  title         = {Data-Efficient Decentralized Visual {SLAM}},
  journal       = {{IEEE} Int. Conf. Robot. Autom. ({ICRA})},
  year          = 2018,
  month         = may
}

You can find a pdf of the paper here. If you use any of this code, please cite this publication.

You might be looking for the python/tensorflow implementation of NetVLAD, which is also tied to that publication. Find that one here.

Downloads

File Size Description sha1
kitti.zip 144.7MB Intermediate files for KITTI 00 f5f39202afdb598d50dc14d43580114cd7eb81bf
stata.zip 649.8MB Intermediate files for Stata 2012-01-25-12-14-25 8b6c488ce3ca99b7abd41a553387ef9c7c447a24
robotcar_netvlad_feats.zip 414MB NetVLAD features used for DVPR cluster training 8785d63dd56b15ebc8de8a6b1c7e3554754953e4

Install instructions

C++

Install the ROS ecosystem. This has been developed with ROS version Jade under Ubuntu 14.04. Minimal installation will do. Next, install catkin tools, vcstool, OpenCV-nonfree dev, autoconf and libglew-dev:

sudo add-apt-repository --yes ppa:xqms/opencv-nonfree # Maybe not necessary for Ubuntu > 14.04?
sudo apt-get update
sudo apt-get install python-catkin-tools python-vcstool libopencv-nonfree-dev autoconf libglew-dev

# Create a new catkin workspace if needed:
mkdir -p my_ws/src
cd my_ws
catkin config --init --mkdirs --extend /opt/ros/<YOUR VERSION> --merge-devel --cmake-args -DCMAKE_BUILD_TYPE=Release

# Clone dslam:
cd src
git clone [email protected]:uzh-rpg/dslam_open.git

# Clone dependencies:
vcs-import < dslam_open/dependencies.yaml

# Build:
catkin build

Matlab

For full reproduction, you need to install NetVLAD and all its dependencies and add it to your matlab path. However, for the datasets evaluated in the paper, we provide the intermediate results generated by NetVLAD, so you can skip the installation of NetVLAD for now.

Distributed Trajectory Estimation

Build distributed-mapper in the feature/logging branch in an arbitrary location. No need to build the unit tests (they require extra dependencies), all you need is the runDistributedMapper executable.

Run instructions

In the following, we list all data processing steps that produce intermediate results. All intermediate results are saved in <DATASET SEQUENCE ROOT>/dslam/. Furthermore, we provide all intermediate results for the datasets evaluated in the paper, so you can skip the corresponding steps and just use our intermediate results. Note that some steps are nondeterministic (ORB SLAM, NetVLAD clustering, the decentralized SLAM simulation itself).

Dataset preprocessing

Note that these are only necessary if you want to reproduce the pipeline fully or want to adapt the pipeline to your own dataset. If you just want to run the system on either of the two datasets in the paper, you can use the preprocessed data we provide and skip straight to Execute the remaining preprocessing sections.

KITTI 00

For KITTI 00, obtained here, no special preprocessing is necessary.

Stata 2012-01-25-12-14-25

For Stata 2012-01-25-12-14-25, which can be obtained here, we require somewhat more preprocessing. We need to first rectify the images and then parse images, times and ground truth poses out of the rosbag. Launch dslam/launch/rectify_stata.launch, start recording /wide_stereo/left/image_rect and /wide_stereo/right/image_rect into a rosbag, and play back the main dataset rosbag. Once the images are rectified, run dslam/src/stata_unbag.py with the following parameters:

  • --bag_name path to the main bag downloaded from the dataset website
  • --rect_bag_name path to the bag with rectified images you just created
  • --outdir output directory
  • --tf_file the ground truth .poses file downloaded from the stata dataset (rightmost column in the downloads table)

This will take some time and create the images folder in the output directory, as well as times.txt, gt_poses.txt and some auxiliary files that help you assemble the ORB SLAM settings file (or you can use the one we provide).

Run ORB SLAM (loop closure disabled) to generate visual odometry data

In your catkin workspace, run dataset_to_vo, for example on KITTI 00:

./devel/lib/dslam/dataset_to_vo --type=kitti /home/titus/data/kitti/00/ /home/titus/data/kitti/00/orb_kitti.yaml

Where orb_kitti.yaml are the configuration parameters to run ORB SLAM on the KITTI datasets. They are available in the files we provide for download. Once this has completed, the following files will be created in the current working directory:

descs_0.txt
lm_obs_0.txt
lm_pos_0.txt
poses_0.txt
times_0.txt

Copy these files to <DATASET SEQUENCE ROOT>/dslam/. If more than one set of these exists, ORB SLAM failed at some point. In that case, either rerun the simulation until it does not fail, or, if you have one set containing the majority of the dataset, just use that set (rename it to end with _0.txt).

Configure the main simulation parameters in decentr_sim.m

All subsequent steps will take place in the Matlab script dslam/matlab/decentr_sim.m, so open that script in Matlab and set the configuration variables as indicated in the first section. Here is an example configuration:

confmat

Note that dvpr_train_path is the path containing NetVLAD features to be used for the clustering of the NetVLAD space used by decentralized visual place recognition. See the corresponding paper for detailed insight. As features, we used a random bunch of features extracted from several sequences of the Oxford RobotCar dataset. These features are available as download and we recommend you use them as well. Alternatively, you can have the variable point to any folder containing several .bin files with NetVLAD output, representing your NetVLAD clustering training dataset.

Parse NetVLAD descriptors for the dataset

Note: This is done with the Matlab implementation of NetVLAD for dslam. If you are looking for the python/tensorflow implementation of NetVLAD that is also tied to this publication, you will find it here.

This step takes quite some time (10 minutes on KITTI 00 with an NVIDIA GT 1060), so consider using the provided file instead. If you still want to run this yourself, in decentr_sim.m, execute the section %% Generate NetVLAD vectors for dataset. Note that this requires NetVLAD weights. We used vd16_pitts30k_conv5_3_vlad_preL2_intra_white.mat provided here. Once the parsing is complete, the file netvlad_feats.bin will appear in <DATASET SEQUENCE ROOT>/dslam/.

Note that NetVLAD can only take jpg pictures as input. You might need to convert any png pictures into jpg, for example using the following bash commands:

for i in *.png ; do convert "$i" "${i%.*}.jpg" ; done

Execute the remaining preprocessing sections

The next three sections in decentr_sim.m take you through the rest of preprocessing that sets up the decentralized SLAM simulation:

  1. parseAllData() zips up the visual odometry (VO) output from ORB SLAM and the NetVLAD descriptors parsed in the previous section and puts the result into full_data.mat.
  2. splitAndSave() subdivides the VO + NetVLAD data into n subsequences, one per simulated robot. The result is saved in full_data_n_robots.mat, where n is replaced with the used number of robots.
  3. generateDecentrFrameStream() takes the subsequences and rearranges the VO data into a stream representing the VO of all sequences being played back simultaneously. The stream is saved into decentr_stream_n_robots.mat.

Simulate!

Now that all preprocessing is done, you are ready to run the decentralized SLAM simulation!

  1. Tweak the parameters in the %% Parameters section.
  2. Don't forget to have one process of the verification_request_server running.

If you are running inside the dslam/matlab directory, the verification_request_server can be run with:

 ../../../../devel/lib/dslam/verification_request_server temp_request.txt temp_result.txt temp_lock.txt

Execute up until and with the runSimulationAndSave() command. This command will run the simulation and give you live visual feedback like this (see also gif on top of readme):

viz

Once the simulation is complete, results will be written into a file called run_data_X.mat, where X contains a string of the parameters used in the simulation.

Plot

Once the simulation is complete, you can re-plot the paper figures for your run with the sections following runSimulationAndSave() in decentr_sim.m. If you want to reproduce the parameter studies (min dist gv parameter study and NetVLAD dimension parameter study), you can find the code for them in param_studies.m.

Acknowledgements

This research was funded by the DARPA FLA Program, the National Center of Competence in Research (NCCR) Robotics through the Swiss National Science Foundation, the SNSF-ERC Starting Grant and the U.S. Army Research Lab (ARL) through the MAST-CTA project 329420

More Repositories

1

event-based_vision_resources

2,212
star
2

rpg_svo

Semi-direct Visual Odometry
C++
2,013
star
3

rpg_svo_pro_open

C++
1,125
star
4

rpg_trajectory_evaluation

Toolbox for quantitative trajectory evaluation of VO/VIO
Python
852
star
5

flightmare

An Open Flexible Quadrotor Simulator
C++
756
star
6

agile_autonomy

Repository Containing the Code associated with the Paper: "Learning High-Speed Flight in the Wild"
C++
577
star
7

rpg_timelens

Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation
Python
566
star
8

rpg_quadrotor_control

Quadrotor control framework developed by the Robotics and Perception Group
C++
494
star
9

rpg_open_remode

This repository contains an implementation of REMODE (REgularized MOnocular Depth Estimation), as described in the paper.
C++
480
star
10

rpg_esim

ESIM: an Open Event Camera Simulator
C
476
star
11

agilicious

Agile flight done right!
TeX
424
star
12

vilib

CUDA Visual Library by RPG
C++
399
star
13

rpg_public_dronet

Code for the paper Dronet: Learning to Fly by Driving
Python
395
star
14

high_mpc

Policy Search for Model Predictive Control with Application to Agile Drone Flight
C
317
star
15

rpg_dvs_ros

ROS packages for DVS
C++
293
star
16

rpg_e2vid

Code for the paper "High Speed and High Dynamic Range Video with an Event Camera" (T-PAMI, 2019).
Python
275
star
17

rpg_svo_example

Example node to use the SVO Installation.
C++
268
star
18

rpg_mpc

Model Predictive Control for Quadrotors with extension to Perception-Aware MPC
C
248
star
19

rpg_vid2e

Open source implementation of CVPR 2020 "Video to Events: Recycling Video Dataset for Event Cameras"
Python
235
star
20

netvlad_tf_open

Tensorflow port of https://github.com/Relja/netvlad
Python
225
star
21

rpg_ultimate_slam_open

Open source code for "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios" RA-L 2018
C++
225
star
22

deep_drone_acrobatics

Code for the project Deep Drone Acrobatics.
Python
178
star
23

rpg_information_field

Information Field for Perception-aware Planning
C++
170
star
24

data_driven_mpc

Python
165
star
25

rpg_vision-based_slam

This repo contains the code of the paper "Continuous-Time vs. Discrete-Time Vision-based SLAM: A Comparative Study", RA-L 2022.
C++
163
star
26

vimo

Visual-Inertial Model-based State and External Forces Estimator
C++
162
star
27

rpg_dvs_evo_open

Implementation of EVO (RA-L 17)
C++
160
star
28

deep_ev_tracker

Repository relating to "Data-driven Feature Tracking for Event Cameras" (CVPR, 2023, Award Candidate).
Python
143
star
29

fault_tolerant_control

Vision-based quadrotor fault-tolerant flight controller.
C++
139
star
30

rpg_event_representation_learning

Repo for learning event representations
Python
135
star
31

rpg_emvs

Code for the paper "EMVS: Event-based Multi-View Stereo" (IJCV, 2018)
C++
129
star
32

rpg_monocular_pose_estimator

A monocular pose estimation system based on infrared LEDs
C++
128
star
33

rpg_eklt

Code for the paper "EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames" (IJCV'19)
C++
126
star
34

agile_flight

Developing and Comparing Vision-based Algorithms for Vision-based Agile Flight
Python
124
star
35

e2calib

CVPRW 2021: How to calibrate your event camera
Python
118
star
36

rpg_vikit

Vision-Kit provides some tools for your vision/robotics project.
C++
110
star
37

rpg_asynet

Code for the paper "Event-based Asynchronous Sparse Convolutional Networks" (ECCV, 2020).
Python
105
star
38

rpg_e2depth

Code for Learning Monocular Dense Depth from Events paper (3DV20)
Python
105
star
39

rpg_ig_active_reconstruction

This repository contains the active 3D reconstruction library described in the papers: "An Information Gain Formulation for Active Volumetric 3D Reconstruction" by Isler et al. (ICRA 2016) and "A comparison of volumetric information gain metrics for active 3D object reconstruction" by Delmerico et al. (Autonomous Robots, 2017).
C++
103
star
40

fast

FAST corner detector by Edward Rosten
C++
102
star
41

deep_uncertainty_estimation

This repository provides the code used to implement the framework to provide deep learning models with total uncertainty estimates as described in "A General Framework for Uncertainty Estimation in Deep Learning" (Loquercio, SegΓΉ, Scaramuzza. RA-L 2020).
Python
102
star
42

aegnn

Python
101
star
43

rpg_corner_events

Fast Event-based Corner Detection
C++
101
star
44

snn_angular_velocity

Event-Based Angular Velocity Regression with Spiking Networks
Python
98
star
45

DSEC

Python
96
star
46

eds-buildconf

Build bootstrapping for the Event-aided Direct Sparce Odometry (EDS)
Shell
94
star
47

IROS2019-FPV-VIO-Competition

FPV Drone Racing VIO competition.
93
star
48

rpg_davis_simulator

Simulate a DAVIS camera from synthetic Blender scenes
Python
92
star
49

E-RAFT

Python
82
star
50

sim2real_drone_racing

A Framework for Zero-Shot Sim2Real Drone Racing
C++
77
star
51

learned_inertial_model_odometry

This repo contains the code of the paper "Learned Inertial Odometry for Autonomous Drone Racing", RA-L 2023.
Python
75
star
52

rpg_ramnet

Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)
Python
75
star
53

imips_open

Matching Features Without Descriptors: Implicitly Matched Interest Points
Python
73
star
54

rpg_feature_tracking_analysis

Package for performing analysis on event-based feature trackers.
Python
72
star
55

rpg_svo_pro_gps

SVO Pro with GPS
C++
71
star
56

sb_min_time_quadrotor_planning

Code for the project Minimum-Time Quadrotor Waypoint Flight in Cluttered Environments
C++
61
star
57

mh_autotune

AutoTune: Controller Tuning for High-Speed Flight
Python
55
star
58

rpg_image_reconstruction_from_events

MATLAB
52
star
59

event-based_object_catching_anymal

Code for "Event-based Agile Object Catching with a Quadrupedal Robot", Forrai et al. ICRA'23
C++
48
star
60

RVT

Implementation of "Recurrent Vision Transformers for Object Detection with Event Cameras". CVPR 2023
Python
48
star
61

ess

Repository relating to "ESS: Learning Event-based Semantic Segmentation from Still Images" (ECCV, 2022).
Python
47
star
62

colmap_utils

Python scripts and functions to work with COLMAP
Python
46
star
63

rpg_youbot_torque_control

Torque Control for the KUKA youBot Arm
C
46
star
64

rpg_time_optimal

Time-Optimal Planning for Quadrotor Waypoint Flight
Python
46
star
65

rpg_blender_omni_camera

Patch for adding an omnidirectional camera model into Blender (Cycles)
42
star
66

rpg_vi_cov_transformation

Covariance Transformation for Visual-inertial Systems
Python
40
star
67

line_tracking_with_event_cameras

C++
37
star
68

sips2_open

Succinct Interest Points from Unsupervised Inlierness Probability Learning
Python
35
star
69

cl_initial_buffer

Repository relating to "Contrastive Initial State Buffer for Reinforcement Learning" (ICRA, 2024).
Python
33
star
70

uzh_fpv_open

Repo to accompany the UZH FPV dataset
Python
32
star
71

rpg_ev-transfer

Open source implementation of RAL 2022 "Bridging the Gap between Events and Frames through Unsupervised Domain Adaptation"
Python
31
star
72

ESL

ESL: Event-based Structured Light
Python
30
star
73

IROS2020-FPV-VIO-Competition

FPV Drone Racing VIO Competition
29
star
74

flightmare_unity

C#
27
star
75

authorship_attribution

Python
27
star
76

rpg_event_lifetime

MATLAB Implementation of Event Lifetime Estimation
MATLAB
27
star
77

slam-eds

Events-aided Sparse Odometry: this is the library for the direct approach using events and frames
C++
25
star
78

fast_neon

Fast detector with NEON accelerations
C++
19
star
79

direct_event_camera_tracker

Open-source code for ICRA'19 paper Bryner et al.
C++
17
star
80

timelens-pp

Dataset Download page for the BS-ERGB dataset introduced in Time Lens++ (CVPR'22)
15
star
81

ICRA2020-FPV-VIO-Competition

FPV Drone Racing VIO competition.
12
star
82

rpg_quadrotor_common

Common functionality for rpg_quadrotor_control
C++
11
star
83

flymation

Flexible Animation for Flying Robots
C#
8
star
84

ze_oss

RPG fork of ze_oss
C++
7
star
85

slam-orogen-eds

Event-aided Direct Sparse Odometry: full system in a Rock Task component
C++
6
star
86

cvpr18_event_steering_angle

Repository of the CVPR18 paper "Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars"
Python
5
star
87

rpg_mpl_ros

C++
4
star
88

dsec-det

Code for assembling and visualizing DSEC data for the detection task.
Python
4
star
89

esfp

ESfP: Event-based Shape from Polarization (CVPR 2023)
Python
3
star
90

VAPAR

Python
3
star
91

rpg_single_board_io

GPIO and ADC functionality for single board computers
C++
3
star
92

assimp_catkin

A catkin wrapper for assimp
CMake
1
star
93

aruco_catkin

Catkinization of https://sourceforge.net/projects/aruco/
CMake
1
star
94

dodgedrone_simulation

C++
1
star
95

power_line_tracking_with_event_cameras

Python
1
star
96

pangolin_catkin

CMake
1
star
97

dlib_catkin

Catkin wrapper for https://github.com/dorian3d/DLib
CMake
1
star