• Stars
    star
    225
  • Rank 177,187 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tensorflow port of https://github.com/Relja/netvlad

netvlad_tf

The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide the weights corresponding to the best model as TensorFlow checkpoint. The repository also contains code that can be used to import other models that were trained in Matlab, as well as tests to make sure that Python produces similar results as Matlab.

We might or might not port the training code to Python/TensorFlow in the future. See GitHub issues.

For your convenience, here is the BibTeX of NetVLAD:

@InProceedings{Arandjelovic16,
  author       = "Arandjelovi\'c, R. and Gronat, P. and Torii, A. and Pajdla, T. and Sivic, J.",
  title        = "{NetVLAD}: {CNN} architecture for weakly supervised place recognition",
  booktitle    = "IEEE Conference on Computer Vision and Pattern Recognition",
  year         = "2016",
}

This TensorFlow port has been written at the Robotics and Perception Group, University of Zurich and ETH Zurich.

Citation

If you use this code in an academic context, please cite the following ICRA'18 publication:

T. Cieslewski, S. Choudhary, D. Scaramuzza: Data-Efficient Decentralized Visual SLAM IEEE International Conference on Robotics and Automation (ICRA), 2018.

Deploying the default model

Download the checkpoint here(1.1 GB). Extract the zip and move its contents to the checkpoints folder of the repo.

Add the python folder to $PYTHONPATH. Alternatively, ROS users can simply clone this repository into the src folder of a catkin workspace.

Python dependencies, which can all be downloaded with pip are:

numpy
tensorflow-gpu

matplotlib (tests only)
opencv-python (tests only)
scipy (model importing only)

The default network can now be deployed as follows:

import cv2
import numpy as np
import tensorflow as tf

import netvlad_tf.net_from_mat as nfm
import netvlad_tf.nets as nets

tf.reset_default_graph()

image_batch = tf.placeholder(
        dtype=tf.float32, shape=[None, None, None, 3])

net_out = nets.vgg16NetvladPca(image_batch)
saver = tf.train.Saver()

sess = tf.Session()
saver.restore(sess, nets.defaultCheckpoint())

inim = cv2.imread(nfm.exampleImgPath())
inim = cv2.cvtColor(inim, cv2.COLOR_BGR2RGB)

batch = np.expand_dims(inim, axis=0)
result = sess.run(net_out, feed_dict={image_batch: batch})

A test to make sure that you get the correct output

To verify that you get the correct output, download this mat (83MB) and put it into the matlab folder. Then, you can run tests/test_nets.py: if it passes, you get the same output as the Matlab implementation for the example image. Note: An issue has been reported where some versions of Matlab and Python load images differently.

Importing other models trained with Matlab

Assuming you have a .mat file with your model:

  1. Run it through matlab/net_class2struct. This converts all serialized classes to serialized structs and is necessary for Python to be able to read all data fields. Note that Matlab needs access to the corresponding class definitions, so you probably need to have NetVLAD set up in Matlab.
  2. Make sure it runs through net_from_mat.netFromMat(). You might need to adapt some of the code there if you use a model that differs from the default one. It is helpful to use the Matlab variable inspector for debugging here.
  3. Adapt and run tests/test_net_from_mat.py. This helps you to ensure that all intermediate layers produce reasonably similar results.
  4. See mat_to_checkpoint.py for how to convert a mat file to a checkpoint. Once you have the checkpoint, you can define the network from scratch (compare to nets.vgg16NetvladPca()). Now, if all variables have been named consistently, you have a pure TensorFlow version of your NetVLAD network model. See tests/test_nets.py for a test that also verifies this implementation.

Performance test on KITTI 00

See matlab/kitti_pr.m and tests/test_kitti.py for further testing which ensures that place recognition performance is consistent between the Matlab and Python implementations. This test requires the grayscale odometry data of KITTI to be linked in the main folder of the repo.

kitti

More Repositories

1

event-based_vision_resources

2,212
star
2

rpg_svo

Semi-direct Visual Odometry
C++
2,013
star
3

rpg_svo_pro_open

C++
1,125
star
4

rpg_trajectory_evaluation

Toolbox for quantitative trajectory evaluation of VO/VIO
Python
852
star
5

flightmare

An Open Flexible Quadrotor Simulator
C++
756
star
6

agile_autonomy

Repository Containing the Code associated with the Paper: "Learning High-Speed Flight in the Wild"
C++
577
star
7

rpg_timelens

Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation
Python
566
star
8

rpg_quadrotor_control

Quadrotor control framework developed by the Robotics and Perception Group
C++
494
star
9

rpg_open_remode

This repository contains an implementation of REMODE (REgularized MOnocular Depth Estimation), as described in the paper.
C++
480
star
10

rpg_esim

ESIM: an Open Event Camera Simulator
C
476
star
11

agilicious

Agile flight done right!
TeX
424
star
12

vilib

CUDA Visual Library by RPG
C++
399
star
13

rpg_public_dronet

Code for the paper Dronet: Learning to Fly by Driving
Python
395
star
14

high_mpc

Policy Search for Model Predictive Control with Application to Agile Drone Flight
C
317
star
15

rpg_dvs_ros

ROS packages for DVS
C++
293
star
16

rpg_e2vid

Code for the paper "High Speed and High Dynamic Range Video with an Event Camera" (T-PAMI, 2019).
Python
275
star
17

dslam_open

Public code for "Data-Efficient Decentralized Visual SLAM"
MATLAB
270
star
18

rpg_svo_example

Example node to use the SVO Installation.
C++
268
star
19

rpg_mpc

Model Predictive Control for Quadrotors with extension to Perception-Aware MPC
C
248
star
20

rpg_vid2e

Open source implementation of CVPR 2020 "Video to Events: Recycling Video Dataset for Event Cameras"
Python
235
star
21

rpg_ultimate_slam_open

Open source code for "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios" RA-L 2018
C++
225
star
22

deep_drone_acrobatics

Code for the project Deep Drone Acrobatics.
Python
178
star
23

rpg_information_field

Information Field for Perception-aware Planning
C++
170
star
24

data_driven_mpc

Python
165
star
25

rpg_vision-based_slam

This repo contains the code of the paper "Continuous-Time vs. Discrete-Time Vision-based SLAM: A Comparative Study", RA-L 2022.
C++
163
star
26

vimo

Visual-Inertial Model-based State and External Forces Estimator
C++
162
star
27

rpg_dvs_evo_open

Implementation of EVO (RA-L 17)
C++
160
star
28

deep_ev_tracker

Repository relating to "Data-driven Feature Tracking for Event Cameras" (CVPR, 2023, Award Candidate).
Python
143
star
29

fault_tolerant_control

Vision-based quadrotor fault-tolerant flight controller.
C++
139
star
30

rpg_event_representation_learning

Repo for learning event representations
Python
135
star
31

rpg_emvs

Code for the paper "EMVS: Event-based Multi-View Stereo" (IJCV, 2018)
C++
129
star
32

rpg_monocular_pose_estimator

A monocular pose estimation system based on infrared LEDs
C++
128
star
33

rpg_eklt

Code for the paper "EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames" (IJCV'19)
C++
126
star
34

agile_flight

Developing and Comparing Vision-based Algorithms for Vision-based Agile Flight
Python
124
star
35

e2calib

CVPRW 2021: How to calibrate your event camera
Python
118
star
36

rpg_vikit

Vision-Kit provides some tools for your vision/robotics project.
C++
110
star
37

rpg_asynet

Code for the paper "Event-based Asynchronous Sparse Convolutional Networks" (ECCV, 2020).
Python
105
star
38

rpg_e2depth

Code for Learning Monocular Dense Depth from Events paper (3DV20)
Python
105
star
39

rpg_ig_active_reconstruction

This repository contains the active 3D reconstruction library described in the papers: "An Information Gain Formulation for Active Volumetric 3D Reconstruction" by Isler et al. (ICRA 2016) and "A comparison of volumetric information gain metrics for active 3D object reconstruction" by Delmerico et al. (Autonomous Robots, 2017).
C++
103
star
40

fast

FAST corner detector by Edward Rosten
C++
102
star
41

deep_uncertainty_estimation

This repository provides the code used to implement the framework to provide deep learning models with total uncertainty estimates as described in "A General Framework for Uncertainty Estimation in Deep Learning" (Loquercio, SegΓΉ, Scaramuzza. RA-L 2020).
Python
102
star
42

aegnn

Python
101
star
43

rpg_corner_events

Fast Event-based Corner Detection
C++
101
star
44

snn_angular_velocity

Event-Based Angular Velocity Regression with Spiking Networks
Python
98
star
45

DSEC

Python
96
star
46

eds-buildconf

Build bootstrapping for the Event-aided Direct Sparce Odometry (EDS)
Shell
94
star
47

IROS2019-FPV-VIO-Competition

FPV Drone Racing VIO competition.
93
star
48

rpg_davis_simulator

Simulate a DAVIS camera from synthetic Blender scenes
Python
92
star
49

E-RAFT

Python
82
star
50

sim2real_drone_racing

A Framework for Zero-Shot Sim2Real Drone Racing
C++
77
star
51

learned_inertial_model_odometry

This repo contains the code of the paper "Learned Inertial Odometry for Autonomous Drone Racing", RA-L 2023.
Python
75
star
52

rpg_ramnet

Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)
Python
75
star
53

imips_open

Matching Features Without Descriptors: Implicitly Matched Interest Points
Python
73
star
54

rpg_feature_tracking_analysis

Package for performing analysis on event-based feature trackers.
Python
72
star
55

rpg_svo_pro_gps

SVO Pro with GPS
C++
71
star
56

sb_min_time_quadrotor_planning

Code for the project Minimum-Time Quadrotor Waypoint Flight in Cluttered Environments
C++
61
star
57

mh_autotune

AutoTune: Controller Tuning for High-Speed Flight
Python
55
star
58

rpg_image_reconstruction_from_events

MATLAB
52
star
59

event-based_object_catching_anymal

Code for "Event-based Agile Object Catching with a Quadrupedal Robot", Forrai et al. ICRA'23
C++
48
star
60

RVT

Implementation of "Recurrent Vision Transformers for Object Detection with Event Cameras". CVPR 2023
Python
48
star
61

ess

Repository relating to "ESS: Learning Event-based Semantic Segmentation from Still Images" (ECCV, 2022).
Python
47
star
62

colmap_utils

Python scripts and functions to work with COLMAP
Python
46
star
63

rpg_youbot_torque_control

Torque Control for the KUKA youBot Arm
C
46
star
64

rpg_time_optimal

Time-Optimal Planning for Quadrotor Waypoint Flight
Python
46
star
65

rpg_blender_omni_camera

Patch for adding an omnidirectional camera model into Blender (Cycles)
42
star
66

rpg_vi_cov_transformation

Covariance Transformation for Visual-inertial Systems
Python
40
star
67

line_tracking_with_event_cameras

C++
37
star
68

sips2_open

Succinct Interest Points from Unsupervised Inlierness Probability Learning
Python
35
star
69

cl_initial_buffer

Repository relating to "Contrastive Initial State Buffer for Reinforcement Learning" (ICRA, 2024).
Python
33
star
70

uzh_fpv_open

Repo to accompany the UZH FPV dataset
Python
32
star
71

rpg_ev-transfer

Open source implementation of RAL 2022 "Bridging the Gap between Events and Frames through Unsupervised Domain Adaptation"
Python
31
star
72

ESL

ESL: Event-based Structured Light
Python
30
star
73

IROS2020-FPV-VIO-Competition

FPV Drone Racing VIO Competition
29
star
74

flightmare_unity

C#
27
star
75

authorship_attribution

Python
27
star
76

rpg_event_lifetime

MATLAB Implementation of Event Lifetime Estimation
MATLAB
27
star
77

slam-eds

Events-aided Sparse Odometry: this is the library for the direct approach using events and frames
C++
25
star
78

fast_neon

Fast detector with NEON accelerations
C++
19
star
79

direct_event_camera_tracker

Open-source code for ICRA'19 paper Bryner et al.
C++
17
star
80

timelens-pp

Dataset Download page for the BS-ERGB dataset introduced in Time Lens++ (CVPR'22)
15
star
81

ICRA2020-FPV-VIO-Competition

FPV Drone Racing VIO competition.
12
star
82

rpg_quadrotor_common

Common functionality for rpg_quadrotor_control
C++
11
star
83

flymation

Flexible Animation for Flying Robots
C#
8
star
84

ze_oss

RPG fork of ze_oss
C++
7
star
85

slam-orogen-eds

Event-aided Direct Sparse Odometry: full system in a Rock Task component
C++
6
star
86

cvpr18_event_steering_angle

Repository of the CVPR18 paper "Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars"
Python
5
star
87

rpg_mpl_ros

C++
4
star
88

dsec-det

Code for assembling and visualizing DSEC data for the detection task.
Python
4
star
89

esfp

ESfP: Event-based Shape from Polarization (CVPR 2023)
Python
3
star
90

VAPAR

Python
3
star
91

rpg_single_board_io

GPIO and ADC functionality for single board computers
C++
3
star
92

assimp_catkin

A catkin wrapper for assimp
CMake
1
star
93

aruco_catkin

Catkinization of https://sourceforge.net/projects/aruco/
CMake
1
star
94

dodgedrone_simulation

C++
1
star
95

power_line_tracking_with_event_cameras

Python
1
star
96

pangolin_catkin

CMake
1
star
97

dlib_catkin

Catkin wrapper for https://github.com/dorian3d/DLib
CMake
1
star