• Stars
    star
    178
  • Rank 214,989 (Top 5 %)
  • Language
    Python
  • License
    Other
  • Created about 5 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Overview

This is the code-release for the TuRBO algorithm from Scalable Global Optimization via Local Bayesian Optimization appearing in NeurIPS 2019. This is an implementation for the noise-free case and may not work well if observations are noisy as the center of the trust region should be chosen based on the posterior mean in this case.

Note that TuRBO is a minimization algorithm, so please make sure you reformulate potential maximization problems.

Benchmark functions

Robot pushing

The original code for the robot pushing problem is available at https://github.com/zi-w/Ensemble-Bayesian-Optimization. We have made the following changes to the code when running our experiments:

  1. We turned off the visualization, which speeds up the function evaluations.
  2. We replaced all instances of np.random.normal(0, 0.01) by np.random.normal(0, 1e-6) in push_utils.py. This makes the function close to noise-free. Another option is to average over several evaluations using the original code
  3. We flipped the sign of the objective function to turn this into a minimization problem.

Dependencies: numpy , pygame, box2d-py

Rover

The original code for the robot pushing problem is available at https://github.com/zi-w/Ensemble-Bayesian-Optimization. We used the large version of the problem, which has 60 dimensions. We have flipped the sign of the objective function to turn this into a minimization problem.

Dependencies: numpy, scipy

Lunar

The lunar code is available in the OpenAI gym: https://github.com/openai/gym. The goal of the problem is to learn the parameter values of a controller for the lunar lander. The controller we learn is a modification of the original heuristic controller which takes the form:

def heuristic_Controller(s, w):
    angle_targ = s[0] * w[0] + s[2] * w[1]
    if angle_targ > w[2]:
        angle_targ = w[2]
    if angle_targ < -w[2]:
        angle_targ = -w[2]
    hover_targ = w[3] * np.abs(s[0])

    angle_todo = (angle_targ - s[4]) * w[4] - (s[5]) * w[5]
    hover_todo = (hover_targ - s[1]) * w[6] - (s[3]) * w[7]

    if s[6] or s[7]:
        angle_todo = w[8]
        hover_todo = -(s[3]) * w[9]

    a = 0
    if hover_todo > np.abs(angle_todo) and hover_todo > w[10]:
        a = 2
    elif angle_todo < -w[11]:
        a = 3
    elif angle_todo > +w[11]:
        a = 1
    return a

We use the constraints 0 <= w_i <= 2 for all parameters. We use INITIAL_RANDOM = 1500.0 to make the problem more challenging.

For more information about the logic behind this controller and how to integrate it with gym, take a look at the original heuristic controller source code: https://github.com/openai/gym/blob/master/gym/envs/box2d/lunar_lander.py#L364

Dependencies: gym, box2d-py

Cosmological constant

The code for the cosmological constant problem is available here: https://ascl.net/1306.012. You need to follow the instructions and compile the FORTRAN code. This gives you an executable CAMB that you can call to run the simulation.

The parameter names and bounds that we tune are the following:

ombh2:           [0.01, 0.25]
omch2:           [0.01, 0.25]
omnuh2:          [0.01, 0.25]
omk:             [0.01, 0.25]
hubble:          [52.5, 100]
temp_cmb:        [2.7, 2.8]
hefrac:          [0.2, 0.3]
mneu:            [2.9, 3.09]
scalar_amp:      [1.5e-9, 2.6e-8]
scalar_spec_ind: [0.72, 5]
rf_fudge:        [0, 100]
rf_fudge_he:     [0, 100]

Examples

Check the examples folder for two examples on how to use Turbo-1 and Turbo-n.

Citing us

The final version of the paper is available at: http://papers.nips.cc/paper/8788-scalable-global-optimization-via-local-bayesian-optimization.

@inproceedings{eriksson2019scalable,
  title = {Scalable Global Optimization via Local {Bayesian} Optimization},
  author = {Eriksson, David and Pearce, Michael and Gardner, Jacob and Turner, Ryan D and Poloczek, Matthias},
  booktitle = {Advances in Neural Information Processing Systems},
  pages = {5496--5507},
  year = {2019},
  url = {http://papers.nips.cc/paper/8788-scalable-global-optimization-via-local-bayesian-optimization.pdf},
}

More Repositories

1

deep-neuroevolution

Deep Neuroevolution
Python
1,630
star
2

PPLM

Plug and Play Language Model implementation. Allows to steer topic and attributes of GPT-2 models.
Python
1,125
star
3

UPSNet

UPSNet: A Unified Panoptic Segmentation Network
Python
639
star
4

go-explore

Code for Go-Explore: a New Approach for Hard-Exploration Problems
Python
553
star
5

PyTorch-NEAT

Python
526
star
6

LaneGCN

[ECCV2020 Oral] Learning Lane Graph Representations for Motion Forecasting
Python
502
star
7

sbnet

Sparse Blocks Networks
Python
430
star
8

differentiable-plasticity

Implementations of the algorithms described in Differentiable plasticity: training plastic networks with gradient descent, a research paper from Uber AI Labs.
Python
394
star
9

DeepPruner

DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch (ICCV 2019)
Python
351
star
10

parallax

Tool for interactive embeddings visualization
Python
284
star
11

learning-to-reweight-examples

Code for paper "Learning to Reweight Examples for Robust Deep Learning"
Python
269
star
12

jpeg2dct

C++
251
star
13

poet

Paired Open-Ended Trailblazer (POET) and Enhanced POET
Python
235
star
14

intrinsic-dimension

Jupyter Notebook
220
star
15

CoordConv

Python
208
star
16

atari-model-zoo

A binary release of trained deep reinforcement learning models trained in the Atari machine learning benchmark, and a software release that enables easy visualization and analysis of models, and comparison across training algorithms.
Jupyter Notebook
201
star
17

ape-x

This repo replicates the results Horgan et al obtained in "Distributed Prioritized Experience Replay"
Python
188
star
18

EvoGrad

Python
178
star
19

safemutations

safemutations
C++
143
star
20

permute-quantize-finetune

Using ideas from product quantization for state-of-the-art neural network compression.
Python
143
star
21

deconstructing-lottery-tickets

Python
142
star
22

CRISP

Python
131
star
23

metropolis-hastings-gans

Python
112
star
24

GTN

Python
75
star
25

backpropamine

Train self-modifying neural networks with neuromodulated plasticity
Python
73
star
26

loss-change-allocation

Python
61
star
27

MARVIN

Uber's Multi-Agent Routing Value Iteration Network
Python
57
star
28

GOCC

Go
51
star
29

Synthetic-Petri-Dish

Python
42
star
30

RxThreadEffectChecker

Static checker for Rx Threading Effects, based on the Checker Framework
Java
35
star
31

Map-Elites-Evolutionary

Map-Elites based on Evolution Strategies
Python
31
star
32

D3G

Estimating Q(s,s') with Deep Deterministic Dynamics Gradients
Python
29
star
33

java-dependency-validator

Dependency validator detects runtime compatibility issues at build time
Java
23
star
34

vargp

Variational Auto-Regressive Gaussian Processes for Continual Learning
Python
20
star
35

normative-uncertainty

Python
15
star
36

Evolvability-ES

Python
14
star
37

brezel

Starlark
8
star
38

dispatch-optim

Constrainted based optimization
Python
8
star
39

ga-world-models

Python
7
star
40

FSDM

Code tor the SIGDIAL 2019 paper Flexibly-Structured Model for Task-Oriented Dialogues. It implements a deep learning end-to-end differentiable dialogue system model
Python
7
star
41

rl-controller-verification

Quadcopter Verification
Python
6
star
42

go-context-propagate

Go
4
star
43

last-diff-analyzer

A multi-language tool for checking semantic equivalence for code
Go
2
star
44

presto-HDFS-read-data

A dump of some of our Presto logs, for use as part of ongoing Presto/HDFS research and presentations.
2
star
45

xplane-bazel-docker

Bazel Xplane
C++
1
star
46

tailr

TAILR
Python
1
star