• Stars
    star
    208
  • Rank 189,015 (Top 4 %)
  • Language
    Python
  • License
    Other
  • Created almost 6 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

CoordConv

This repository contains source code necessary to reproduce the results presented in the paper An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution (NeurIPS 2018):

@inproceedings{liu2018coordconv,
  title={An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution},
  author={Liu, Rosanne and Lehman, Joel and Molino, Piero and Petroski Such, Felipe and Frank, Eric and Sergeev, Alex and Yosinski, Jason},
  booktitle={Advances in Neural Information Processing Systems},
  year={2018}
}

For more on this project, including a 8-min video explanation, see the Uber AI Labs blog post.

CoordConv layer, as a drop-in replacement for convolution

The standalone CoordConv layer, wrapped as a tf.layers object, can be found in CoordConv.py. Models constructed in model_builders.py show usage of it.

Data

To generate Not-so-Clevr dataset, which consists of squares randomly positioned on a canvas, and with uniform and quarant splits:

python ./data/not_so_clevr_generator.py

To generate two-object Sort-of-Clevr images, run a modification of the Sort-of-Clevr source code:

python ./data/sort_of_clevr_generator.py

Supervised Coordinate Tasks

The train.py script executes the training of all supervised coordinate tasks as described in the paper. Use --arch to toggle among different tasks.

The file experiment_logs.sh records the entire series of experiments enumerating different hyperparameters for each task, as exactly used to produce results in the paper. Note that we generate random experiment ids for job tracking in the Uber internal cluster, which can be ignored. We also use resman to keep results organized, which is highly recommended!

Examples to run Supervised Coordinate Classification:

# coordconv version
python train.py --arch coordconv_classification -mb 16 -E 100 -L 0.005 --opt adam --l2 0.001 -mul 1  
# deconv version
python train.py --arch deconv_classification -mb 16 -E 2000 -L 0.01 --opt adam --l2 0.001 -mul 2 -fs 3

Use --data_h5 data/rectangle_4_uniform.h5 and --data_h5 data/rectangle_4_quadrant.h5 to observe the performances on two types of splits.

Examples to run Supervised Rendering:

# coordconv version
python train.py --arch coordconv_rendering -mb 16 -E 100 -L 0.005 --opt adam --l2 0.001 -mul 1
# deconv version
python train.py --arch deconv_rendering -mb 16 -E 2000 -L 0.01 --opt adam --l2 0.001 -mul 2 -fs 3

Use --data_h5 data/rectangle_4_uniform.h5 and --data_h5 data/rectangle_4_quadrant.h5 to observe the performances on two types of splits.

Examples to run Supervised Coordinate Regression:

# coordconv version
python train.py --arch conv_regressor -E 100 --lr 0.01 --opt adam --l2 0.00001
# deconv version
python train.py --arch coordconv_regressor -E 100 --lr 0.01 --opt adam --l2 0.00001

Use --data_h5 data/rectangle_4_uniform.h5 and --data_h5 data/rectangle_4_quadrant.h5 to observe the performances on two types of splits.

Generative Tasks

# coordconv GAN
python train_gan.py --arch clevr_coordconv_in_gd -mb 16 -E 50 -L 0.0001 --lr2 .0005 --opt adam --z_dim 256 --snapshot-every 1
# deconv GAN
python train_gan.py --arch clevr_gan -mb 16 -E 50 -L 0.0001 --lr2 .0005 --opt adam --z_dim 256 --snapshot-every 1

TODO

Add RL, and VAE and LSUN GAN models

More Repositories

1

deep-neuroevolution

Deep Neuroevolution
Python
1,630
star
2

PPLM

Plug and Play Language Model implementation. Allows to steer topic and attributes of GPT-2 models.
Python
1,125
star
3

UPSNet

UPSNet: A Unified Panoptic Segmentation Network
Python
639
star
4

go-explore

Code for Go-Explore: a New Approach for Hard-Exploration Problems
Python
553
star
5

PyTorch-NEAT

Python
526
star
6

LaneGCN

[ECCV2020 Oral] Learning Lane Graph Representations for Motion Forecasting
Python
502
star
7

sbnet

Sparse Blocks Networks
Python
430
star
8

differentiable-plasticity

Implementations of the algorithms described in Differentiable plasticity: training plastic networks with gradient descent, a research paper from Uber AI Labs.
Python
394
star
9

DeepPruner

DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch (ICCV 2019)
Python
351
star
10

parallax

Tool for interactive embeddings visualization
Python
284
star
11

learning-to-reweight-examples

Code for paper "Learning to Reweight Examples for Robust Deep Learning"
Python
269
star
12

jpeg2dct

C++
251
star
13

poet

Paired Open-Ended Trailblazer (POET) and Enhanced POET
Python
235
star
14

intrinsic-dimension

Jupyter Notebook
220
star
15

atari-model-zoo

A binary release of trained deep reinforcement learning models trained in the Atari machine learning benchmark, and a software release that enables easy visualization and analysis of models, and comparison across training algorithms.
Jupyter Notebook
201
star
16

ape-x

This repo replicates the results Horgan et al obtained in "Distributed Prioritized Experience Replay"
Python
188
star
17

EvoGrad

Python
178
star
18

TuRBO

Python
178
star
19

safemutations

safemutations
C++
143
star
20

permute-quantize-finetune

Using ideas from product quantization for state-of-the-art neural network compression.
Python
143
star
21

deconstructing-lottery-tickets

Python
142
star
22

CRISP

Python
131
star
23

metropolis-hastings-gans

Python
112
star
24

GTN

Python
75
star
25

backpropamine

Train self-modifying neural networks with neuromodulated plasticity
Python
73
star
26

loss-change-allocation

Python
61
star
27

MARVIN

Uber's Multi-Agent Routing Value Iteration Network
Python
57
star
28

GOCC

Go
51
star
29

Synthetic-Petri-Dish

Python
42
star
30

RxThreadEffectChecker

Static checker for Rx Threading Effects, based on the Checker Framework
Java
35
star
31

Map-Elites-Evolutionary

Map-Elites based on Evolution Strategies
Python
31
star
32

D3G

Estimating Q(s,s') with Deep Deterministic Dynamics Gradients
Python
29
star
33

java-dependency-validator

Dependency validator detects runtime compatibility issues at build time
Java
23
star
34

vargp

Variational Auto-Regressive Gaussian Processes for Continual Learning
Python
20
star
35

normative-uncertainty

Python
15
star
36

Evolvability-ES

Python
14
star
37

brezel

Starlark
8
star
38

dispatch-optim

Constrainted based optimization
Python
8
star
39

ga-world-models

Python
7
star
40

FSDM

Code tor the SIGDIAL 2019 paper Flexibly-Structured Model for Task-Oriented Dialogues. It implements a deep learning end-to-end differentiable dialogue system model
Python
7
star
41

rl-controller-verification

Quadcopter Verification
Python
6
star
42

go-context-propagate

Go
4
star
43

last-diff-analyzer

A multi-language tool for checking semantic equivalence for code
Go
2
star
44

presto-HDFS-read-data

A dump of some of our Presto logs, for use as part of ongoing Presto/HDFS research and presentations.
2
star
45

xplane-bazel-docker

Bazel Xplane
C++
1
star
46

tailr

TAILR
Python
1
star