• Stars
    star
    171
  • Rank 222,266 (Top 5 %)
  • Language
    C++
  • License
    Other
  • Created over 8 years ago
  • Updated over 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Data Augmentation for Caffe

Caffe Augmentation Extension

This is a modified caffe fork (version of 2017/3/10) with ImageData layer data augmentation, which is based on:

@kevinlin311tw's caffe-augmentation, @ChenlongChen's caffe-windows, @ShaharKatz's Caffe-Data-Augmentation, @senecaur's caffe-rta. @kostyaev's caffe-augmentation

min_side_min nad min_side_max are added for random cropping while keeping the aspect ratio, as mentioned in "Deep Residual Learning for Image Recognition"(http://arxiv.org/abs/1512.03385)

and all functions

  • min_side - resize and crop preserving aspect ratio, default 0 (disabled);
  • max_rotation_angle - max angle for an image rotation, default 0;
  • contrast_brightness_adjustment - enable/disable contrast adjustment, default false;
  • smooth_filtering - enable/disable smooth filterion, default false;
  • min_contrast - min contrast multiplier (min alpha), default 0.8;
  • max_contrast - min contrast multiplier (max alpha), default 1.2;
  • max_brightness_shift - max brightness shift in positive and negative directions (beta), default 5;
  • max_smooth - max smooth multiplier, default 6;
  • max_color_shift - max color shift along RGB axes
  • apply_probability - how often every transformation should be applied, default 0.5;
  • debug_params - enable/disable printing tranformation parameters, default false;

from @kostyaev's caffe-augmentation are kept with slightly modifications:

How to use

You could specify your network prototxt as:

layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
  phase: TRAIN
}
transform_param {
    mirror: true
    contrast_brightness_adjustment: true
    smooth_filtering: true
    min_side_min: 256
    min_side_max: 480
    crop_size: 224
    mean_file: "imagenet_mean.binaryproto"
    min_contrast: 0.8
    max_contrast: 1.2
    max_smooth: 6
    apply_probability: 0.5
    max_color_shift: 20
    debug_params: false
}
image_data_param {
  source: "train_list.txt"
  batch_size: 64
}
}

while in testing phase:

layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
  phase: TEST
}
transform_param {
    mirror: false
    min_side: 256
    crop_size: 224
    mean_file: "imagenet_mean.binaryproto"
}
image_data_param {
  source: "test_list.txt"
  batch_size: 32
}
}