MeshLoc
This repository contains the code for our publication MeshLoc: Mesh-Based Visual Localization, which is going to be presented as poster at ECCV 2022.
License
This repository is licensed under the 3-Clause BSD License. See the LICENSE file for full text.
Citation
If you are using the code in this repository, please cite the following paper:
@inproceedings{Panek2022ECCV,
author = {Panek, Vojtech and Kukelova, Zuzana and Sattler, Torsten},
title = {{MeshLoc: Mesh-Based Visual Localization}},
booktitle={European Conference on Computer Vision (ECCV)},
year = {2022},
}
Installation
- follow Image Matching Toolbox installation guide
- clone the repository (
git clone https://github.com/GrumpyZhou/image-matching-toolbox.git
) - prepare
immatch
conda environment (conda env create -f environment.yml
) - activate the
immatch
environment (conda activate immatch
) - install immatch toolbox as Python package (
python setup.py develop
)- possibly update of PyTorch package will be necessary (e.g.
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
)
- possibly update of PyTorch package will be necessary (e.g.
- clone the repository (
- install other necessary packages to
immatch
environment (conda install pyyaml
) - clone the MeshLoc repository
git clone --recurse-submodules https://github.com/tsattler/meshloc_release.git
- install mesh_loc Python package to
immatch
environmentcd <mesh_loc_dir>
python setup.py develop
Usage
Current implementation contains localization scripts for two datasets - Aachen v1.1 and 12 Scenes. The scripts should be launched from image-matching-toolbox
directory so the scripts have direct access to the feature matching configuration files. Also activate the prepared immatch
conda environment with all necessary packages.
Example on Aachen v1.1 dataset:
cd <image_matching_toolbox_dir>
conda activate immatch
python3 <mesh_loc_dir>/localize.py \
--db_image_dir <aachen_dataset_path>/images_upright \
--db_depth_image_dir <meshloc_dataset_path>/aachen_day_night_v11/db_renderings/AC14_depth_orig_undist \
--colmap_model_dir <meshloc_dataset_path>/aachen_day_night_v11/db_colmap_models/orig_undist \
--query_dir <aachen_dataset_path>/images_upright \
--query_list <meshloc_dataset_path>/aachen_day_night_v11/night_time_queries_with_intrinsics.txt \
--out_prefix <experiment_outputs_dir_path> \
--match_prefix <experiment_matches_dir_path> \
--method_name patch2pix \
--method_config aachen_v1_1 \
--method_string patch2pix_aachen_v1_1_ \
--retrieval_pairs <meshloc_dataset_path>/aachen_day_night_v11/retrieval_pairs/NetVLAD_top50.txt \
--top_k 50 \
--max_side_length -1 \
--ransac_type POSELIB+REF \
--min_ransac_iterations 10000 \
--max_ransac_iterations 100000 \
--reproj_error 20.0 \
--use_orig_db_images True \
--cluster_keypoints True
Example on 12 Scenes dataset:
cd <image_matching_toolbox_dir>
conda activate immatch
python3 <mesh_loc_dir>/localize_12scenes.py \
--db_image_dir <12_scenes_dataset_path>/office1/manolis/data \
--db_depth_image_dir <meshloc_dataset_path>/12_scenes/db_renderings/12_scenes_apt1_kitchen_depth \
--colmap_model_dir <meshloc_dataset_path>/12_scenes/db_colmap_models/apt1_kitchen \
--query_dir <12_scenes_dataset_path>/office1/manolis/data \
--query_list <meshloc_dataset_path>/12_scenes/queries_with_intrinsics/apt1_kitchen_queries_with_intrinsics.txt \
--out_prefix <experiment_outputs_dir_path> \
--match_prefix <experiment_matches_dir_path> \
--method_name loftr \
--method_config default \
--method_string loftr_default_ \
--retrieval_pairs <meshloc_dataset_path>/12_scenes/retrieval_pairs/apt1_kitchen_DVLAD_top20.txt \
--top_k 20 \
--max_side_length -1 \
--ransac_type POSELIB+REF \
--min_ransac_iterations 10000 \
--max_ransac_iterations 100000 \
--reproj_error 20.0 \
--use_orig_db_images True
List of localization script arguments:
- db_image_dir = directory with database images
- db_depth_image_dir = directory with depth database images (assume
_depth.npz
postfix) - rendering_postfix = postfix of rendered database images if used (our IBMR rendering pipeline produces either
_rendered_color.png
or_rendered_no_color.png
depending on shader preset) - colmap_model_dir = directory of a COLMAP model defining the database cameras -
images
file contains subpaths fromdb_image_dir
to the images - query_dir = directory with query images
- query_list = list of query images with intrinsics - contains subpaths from
query_dir
to the images - out_prefix = prefix (including path) of output file (with estimated query poses) in format accepted by The Visual Localization Benchmark
- match_prefix = prefix (including path) for files containing local matches between query and database images
- method_name = matching method name - see file names in image-matching-toolbox/configs - e.g.
patch2pix
- method_config = one of the method configurations - see configurations inside individual YAML files (e.g. image-matching-toolbox/configs/patch2pix.yml) - e.g.
aachen_v1_1
- method_string - string used for your identification of matching method in output files - e.g.
patch2pix_aachen_v1_1_
- retrieval_pairs = file from a retrieval step containing similar database images for each query image (text file, each line contains
query_image_file database_image_file
) - top_k = number of top retrieved database images, which will be used for localization
- max_side_length = longer side of the database images - for scaling of the query intrinsics (-1 for full resolution)
- ransac_type = RANSAC type (possible values:
POSELIB
,POSELIB+REF
) - min_ransac_iterations = minimum number of RANSAC iterations
- max_ransac_iterations = maximum number of RANSAC iterations
- reproj_error = reprojection error RANSAC threshold
- use_orig_db_images = set True if using original images (not renderings) for
db_image_dir
- triangulate = set True to use triangulation instead of 3D points from depth maps
- merge_3D_points = set True to select one of multiple 3D points available per query feature
- cluster_keypoints = set True to cluster keypoints (applicable only for patch2pix)
- covisibility_filtering = set True to use covisibility filtering
- all_matches_ransac = use all possible 2D-3D matches in RANSAC
- refinement_range = range for the +REF refinement
- refinement_step = step size for the +REF refinement
- bias_x = bias term for x-direction for feature detections
- bias_y = bias term for y-direction for feature detections
The pose estimates from the localization pipeline on Aachen v1.1 can be evaluated by benchmark at https://www.visuallocalization.net/. The pose estimates on 12 Scenes can be evaluated by the https://github.com/tsattler/visloc_pseudo_gt_limitations repository, which also contains links to 12 Scenes COLMAP models.
Data
We used Aachen v1.1 and 12 Scenes datasets for the evaluation in our paper.
The data derived from the above mentioned datasets (such as meshes, renderings, or COLMAP models) can be found in our data repository at https://data.ciirc.cvut.cz/public/projects/2022MeshLoc.
You can use the download script to easily get the whole data repository.
Script parameters:
- if no parameters are passed, the whole data repository will be downloaded to current directory
- -n < all | aachen | 12_scenes > - specifies which dataset to download
- -p < string > - specifies the directory where the data will be downloaded
- -z - unzips everything and removes the zip files
Acknowledgements
This repository is heavily using PoseLib, RansacLib and Image Matching Toolbox. We would like to thank all the contributors of these repositories.