• Stars
    star
    3,766
  • Rank 11,689 (Top 0.3 %)
  • Language
    Rust
  • License
    Apache License 2.0
  • Created over 7 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PROST! a Protocol Buffers implementation for the Rust Language

continuous integration Documentation Crate Dependency Status Discord

PROST!

prost is a Protocol Buffers implementation for the Rust Language. prost generates simple, idiomatic Rust code from proto2 and proto3 files.

Compared to other Protocol Buffers implementations, prost

  • Generates simple, idiomatic, and readable Rust types by taking advantage of Rust derive attributes.
  • Retains comments from .proto files in generated Rust code.
  • Allows existing Rust types (not generated from a .proto) to be serialized and deserialized by adding attributes.
  • Uses the bytes::{Buf, BufMut} abstractions for serialization instead of std::io::{Read, Write}.
  • Respects the Protobuf package specifier when organizing generated code into Rust modules.
  • Preserves unknown enum values during deserialization.
  • Does not include support for runtime reflection or message descriptors.

Using prost in a Cargo Project

First, add prost and its public dependencies to your Cargo.toml:

[dependencies]
prost = "0.11"
# Only necessary if using Protobuf well-known types:
prost-types = "0.11"

The recommended way to add .proto compilation to a Cargo project is to use the prost-build library. See the prost-build documentation for more details and examples.

See the snazzy repository for a simple start-to-finish example.

MSRV

prost follows the tokio-rs projects MSRV model and supports 1.60. For more information on the tokio msrv policy you can check it out here

Generated Code

prost generates Rust code from source .proto files using the proto2 or proto3 syntax. prost's goal is to make the generated code as simple as possible.

protoc

With prost-build v0.11 release, protoc will be required to invoke compile_protos (unless skip_protoc is enabled). Prost will no longer provide bundled a protoc or attempt to compile protoc for users. For install instructions for protoc please check out the protobuf install instructions.

Packages

Prost can now generate code for .proto files that don't have a package spec. prost will translate the Protobuf package into a Rust module. For example, given the package specifier:

package foo.bar;

All Rust types generated from the file will be in the foo::bar module.

Messages

Given a simple message declaration:

// Sample message.
message Foo {
}

prost will generate the following Rust struct:

/// Sample message.
#[derive(Clone, Debug, PartialEq, Message)]
pub struct Foo {
}

Fields

Fields in Protobuf messages are translated into Rust as public struct fields of the corresponding type.

Scalar Values

Scalar value types are converted as follows:

Protobuf Type Rust Type
double f64
float f32
int32 i32
int64 i64
uint32 u32
uint64 u64
sint32 i32
sint64 i64
fixed32 u32
fixed64 u64
sfixed32 i32
sfixed64 i64
bool bool
string String
bytes Vec<u8>

Enumerations

All .proto enumeration types convert to the Rust i32 type. Additionally, each enumeration type gets a corresponding Rust enum type. For example, this proto enum:

enum PhoneType {
  MOBILE = 0;
  HOME = 1;
  WORK = 2;
}

gets this corresponding Rust enum 1:

pub enum PhoneType {
    Mobile = 0,
    Home = 1,
    Work = 2,
}

You can convert a PhoneType value to an i32 by doing:

PhoneType::Mobile as i32

The #[derive(::prost::Enumeration)] annotation added to the generated PhoneType adds these associated functions to the type:

impl PhoneType {
    pub fn is_valid(value: i32) -> bool { ... }
    pub fn from_i32(value: i32) -> Option<PhoneType> { ... }
}

so you can convert an i32 to its corresponding PhoneType value by doing, for example:

let phone_type = 2i32;

match PhoneType::from_i32(phone_type) {
    Some(PhoneType::Mobile) => ...,
    Some(PhoneType::Home) => ...,
    Some(PhoneType::Work) => ...,
    None => ...,
}

Additionally, wherever a proto enum is used as a field in a Message, the message will have 'accessor' methods to get/set the value of the field as the Rust enum type. For instance, this proto PhoneNumber message that has a field named type of type PhoneType:

message PhoneNumber {
  string number = 1;
  PhoneType type = 2;
}

will become the following Rust type 2 with methods type and set_type:

pub struct PhoneNumber {
    pub number: String,
    pub r#type: i32, // the `r#` is needed because `type` is a Rust keyword
}

impl PhoneNumber {
    pub fn r#type(&self) -> PhoneType { ... }
    pub fn set_type(&mut self, value: PhoneType) { ... }
}

Note that the getter methods will return the Rust enum's default value if the field has an invalid i32 value.

The enum type isn't used directly as a field, because the Protobuf spec mandates that enumerations values are 'open', and decoding unrecognized enumeration values must be possible.

Field Modifiers

Protobuf scalar value and enumeration message fields can have a modifier depending on the Protobuf version. Modifiers change the corresponding type of the Rust field:

.proto Version Modifier Rust Type
proto2 optional Option<T>
proto2 required T
proto3 default T for scalar types, Option<T> otherwise
proto3 optional Option<T>
proto2/proto3 repeated Vec<T>

Note that in proto3 the default representation for all user-defined message types is Option<T>, and for scalar types just T (during decoding, a missing value is populated by T::default()). If you need a witness of the presence of a scalar type T, use the optional modifier to enforce an Option<T> representation in the generated Rust struct.

Map Fields

Map fields are converted to a Rust HashMap with key and value type converted from the Protobuf key and value types.

Message Fields

Message fields are converted to the corresponding struct type. The table of field modifiers above applies to message fields, except that proto3 message fields without a modifier (the default) will be wrapped in an Option. Typically message fields are unboxed. prost will automatically box a message field if the field type and the parent type are recursively nested in order to avoid an infinite sized struct.

Oneof Fields

Oneof fields convert to a Rust enum. Protobuf oneofs types are not named, so prost uses the name of the oneof field for the resulting Rust enum, and defines the enum in a module under the struct. For example, a proto3 message such as:

message Foo {
  oneof widget {
    int32 quux = 1;
    string bar = 2;
  }
}

generates the following Rust3:

pub struct Foo {
    pub widget: Option<foo::Widget>,
}
pub mod foo {
    pub enum Widget {
        Quux(i32),
        Bar(String),
    }
}

oneof fields are always wrapped in an Option.

Services

prost-build allows a custom code-generator to be used for processing service definitions. This can be used to output Rust traits according to an application's specific needs.

Generated Code Example

Example .proto file:

syntax = "proto3";
package tutorial;

message Person {
  string name = 1;
  int32 id = 2;  // Unique ID number for this person.
  string email = 3;

  enum PhoneType {
    MOBILE = 0;
    HOME = 1;
    WORK = 2;
  }

  message PhoneNumber {
    string number = 1;
    PhoneType type = 2;
  }

  repeated PhoneNumber phones = 4;
}

// Our address book file is just one of these.
message AddressBook {
  repeated Person people = 1;
}

and the generated Rust code (tutorial.rs):

#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Person {
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    /// Unique ID number for this person.
    #[prost(int32, tag="2")]
    pub id: i32,
    #[prost(string, tag="3")]
    pub email: ::prost::alloc::string::String,
    #[prost(message, repeated, tag="4")]
    pub phones: ::prost::alloc::vec::Vec<person::PhoneNumber>,
}
/// Nested message and enum types in `Person`.
pub mod person {
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct PhoneNumber {
        #[prost(string, tag="1")]
        pub number: ::prost::alloc::string::String,
        #[prost(enumeration="PhoneType", tag="2")]
        pub r#type: i32,
    }
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
    #[repr(i32)]
    pub enum PhoneType {
        Mobile = 0,
        Home = 1,
        Work = 2,
    }
}
/// Our address book file is just one of these.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AddressBook {
    #[prost(message, repeated, tag="1")]
    pub people: ::prost::alloc::vec::Vec<Person>,
}

Accessing the protoc FileDescriptorSet

The prost_build::Config::file_descriptor_set_path option can be used to emit a file descriptor set during the build & code generation step. When used in conjunction with the std::include_bytes macro and the prost_types::FileDescriptorSet type, applications and libraries using Prost can implement introspection capabilities requiring details from the original .proto files.

Using prost in a no_std Crate

prost is compatible with no_std crates. To enable no_std support, disable the std features in prost and prost-types:

[dependencies]
prost = { version = "0.6", default-features = false, features = ["prost-derive"] }
# Only necessary if using Protobuf well-known types:
prost-types = { version = "0.6", default-features = false }

Additionally, configure prost-build to output BTreeMaps instead of HashMaps for all Protobuf map fields in your build.rs:

let mut config = prost_build::Config::new();
config.btree_map(&["."]);

When using edition 2015, it may be necessary to add an extern crate core; directive to the crate which includes prost-generated code.

Serializing Existing Types

prost uses a custom derive macro to handle encoding and decoding types, which means that if your existing Rust type is compatible with Protobuf types, you can serialize and deserialize it by adding the appropriate derive and field annotations.

Currently the best documentation on adding annotations is to look at the generated code examples above.

Tag Inference for Existing Types

Prost automatically infers tags for the struct.

Fields are tagged sequentially in the order they are specified, starting with 1.

You may skip tags which have been reserved, or where there are gaps between sequentially occurring tag values by specifying the tag number to skip to with the tag attribute on the first field after the gap. The following fields will be tagged sequentially starting from the next number.

use prost;
use prost::{Enumeration, Message};

#[derive(Clone, PartialEq, Message)]
struct Person {
    #[prost(string, tag = "1")]
    pub id: String, // tag=1
    // NOTE: Old "name" field has been removed
    // pub name: String, // tag=2 (Removed)
    #[prost(string, tag = "6")]
    pub given_name: String, // tag=6
    #[prost(string)]
    pub family_name: String, // tag=7
    #[prost(string)]
    pub formatted_name: String, // tag=8
    #[prost(uint32, tag = "3")]
    pub age: u32, // tag=3
    #[prost(uint32)]
    pub height: u32, // tag=4
    #[prost(enumeration = "Gender")]
    pub gender: i32, // tag=5
    // NOTE: Skip to less commonly occurring fields
    #[prost(string, tag = "16")]
    pub name_prefix: String, // tag=16  (eg. mr/mrs/ms)
    #[prost(string)]
    pub name_suffix: String, // tag=17  (eg. jr/esq)
    #[prost(string)]
    pub maiden_name: String, // tag=18
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Enumeration)]
pub enum Gender {
    Unknown = 0,
    Female = 1,
    Male = 2,
}

Nix

The prost project maintains flakes support for local development. Once you have nix and nix flakes setup you can just run nix develop to get a shell configured with the required dependencies to compile the whole project.

FAQ

  1. Could prost be implemented as a serializer for Serde?

Probably not, however I would like to hear from a Serde expert on the matter. There are two complications with trying to serialize Protobuf messages with Serde:

  • Protobuf fields require a numbered tag, and currently there appears to be no mechanism suitable for this in serde.
  • The mapping of Protobuf type to Rust type is not 1-to-1. As a result, trait-based approaches to dispatching don't work very well. Example: six different Protobuf field types correspond to a Rust Vec<i32>: repeated int32, repeated sint32, repeated sfixed32, and their packed counterparts.

But it is possible to place serde derive tags onto the generated types, so the same structure can support both prost and Serde.

  1. I get errors when trying to run cargo test on MacOS

If the errors are about missing autoreconf or similar, you can probably fix them by running

brew install automake
brew install libtool

License

prost is distributed under the terms of the Apache License (Version 2.0).

See LICENSE for details.

Copyright 2022 Dan Burkert & Tokio Contributors

Footnotes

  1. Annotations have been elided for clarity. See below for a full example. ↩

  2. Annotations have been elided for clarity. See below for a full example. ↩

  3. Annotations have been elided for clarity. See below for a full example. ↩

More Repositories

1

tokio

A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...
Rust
23,031
star
2

axum

Ergonomic and modular web framework built with Tokio, Tower, and Hyper
Rust
17,992
star
3

mio

Metal I/O library for Rust.
Rust
6,301
star
4

tracing

Application level tracing for Rust.
Rust
5,365
star
5

mini-redis

Incomplete Redis client and server implementation using Tokio - for learning purposes only
Rust
3,927
star
6

console

a debugger for async rust!
Rust
3,542
star
7

loom

Concurrency permutation testing tool for Rust.
Rust
1,847
star
8

bytes

Utilities for working with bytes
Rust
1,739
star
9

io-uring

The `io_uring` library for Rust
Rust
1,037
star
10

tokio-uring

An io_uring backed runtime for Rust
Rust
946
star
11

turmoil

Add hardship to your tests
Rust
772
star
12

tokio-proto

A network application framework for Rust
Rust
694
star
13

slab

Slab allocator for Rust
Rust
641
star
14

tokio-core

I/O primitives and event loop for async I/O in Rust
Rust
628
star
15

async-stream

Asynchronous streams for Rust using async & await notation
Rust
568
star
16

rdbc

Rust DataBase Connectivity (RDBC) :: Common Rust API for database drivers
Rust
558
star
17

tokio-minihttp

Protocol implementation experimentations
Rust
425
star
18

tokio-metrics

Utilities for collecting metrics from a Tokio application
Rust
254
star
19

tls

A collection of Tokio based TLS libraries.
Rust
243
star
20

tracing-opentelemetry

Rust
233
star
21

website

Website for the Tokio project
TypeScript
211
star
22

valuable

Rust
185
star
23

async-backtrace

Rust
162
star
24

tokio-io

Core I/O primitives for asynchronous I/O in Rust.
Rust
124
star
25

tokio-socks5

An example SOCKSv5 server implementation with tokio
Rust
100
star
26

tokio-tls

An implementation of TLS/SSL streams for Tokio
Rust
95
star
27

simulation

Framework for simulating distributed applications
Rust
92
star
28

tokio-timer

Timer facilities for Tokio
Rust
83
star
29

tokio-service

The core `Service` trait in Tokio and support
Rust
81
star
30

tokio-line

Line protocol for Tokio
Rust
64
star
31

tokio-redis

Redis client for Tokio
Rust
58
star
32

tokio-uds

Unix Domain Sockets for tokio
Rust
52
star
33

doc-push

Tokio doc blitz effort - A concerted effort to improve Tokio's documentation.
50
star
34

tokio-compat

Streamline updating a Tokio 0.1 application to Tokio 0.2.
Rust
48
star
35

book

45
star
36

tokio-openssl

OpenSSL bindings for Tokio
Rust
37
star
37

tokio-middleware

A collection of Tokio middleware
Rust
28
star
38

tokio-rfcs

22
star
39

async

Utilities building on top of Rust's async primitives.
Rust
22
star
40

console-gsoc

Google Summer of Code tokio-console prototype
Rust
12
star
41

service-fn

A service implemented by a closure
Rust
11
star
42

gsoc

Organize the Google Summer of Code projects.
6
star
43

cargo-tokio

A cargo subcommand to help building the Tokio project.
Rust
4
star
44

website-next

Next iteration of the Tokio website.
TypeScript
1
star