• Stars
    star
    3,161
  • Rank 14,216 (Top 0.3 %)
  • Language
  • License
    MIT License
  • Created about 5 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Must-read Papers on pre-trained language models.

Must-Read Papers on Pre-trained Language Models (PLMs)

Contributed by Xiaozhi Wang and Zhengyan Zhang.

Introduction

Pre-trained Languge Model (PLM) has achieved great success in NLP since 2018. In this repo, we list some representative work on PLMs and show their relationship with a diagram. Feel free to distribute or use it! Here you can get the source PPT file of the diagram if you want to use it in your presentation.

PLMfamiily

Corrections and suggestions are welcomed.

Open PLMs

We keep training and releasing large-scale PLMs in recent years, which are listed as follows. Welcome to try them.

  1. CPM-2. Cost-Effective Pre-trained Language Models, 2021. [Model&Code]
  2. CPM-1. Chinese Pre-trained Language Model, 2020. [Model&Code] [Paper]
  3. OpenCLap. Open-source Chinese Language Pre-Trained Model Zoo, 2019. [Link]

Survey

Pre-Trained Models: Past, Present and Future. Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, Jun Zhu. arXiv:2106.07139 2021. [pdf]

Papers on PLMs Models

  1. Semi-supervised Sequence Learning. Andrew M. Dai, Quoc V. Le. NIPS 2015. [pdf]
  2. context2vec: Learning Generic Context Embedding with Bidirectional LSTM. Oren Melamud, Jacob Goldberger, Ido Dagan. CoNLL 2016. [pdf] [project] (context2vec)
  3. Unsupervised Pretraining for Sequence to Sequence Learning. Prajit Ramachandran, Peter J. Liu, Quoc V. Le. EMNLP 2017. [pdf] (Pre-trained seq2seq)
  4. Deep contextualized word representations. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer. NAACL 2018. [pdf] [project] (ELMo)
  5. Universal Language Model Fine-tuning for Text Classification. Jeremy Howard and Sebastian Ruder. ACL 2018. [pdf] [project] (ULMFiT)
  6. Improving Language Understanding by Generative Pre-Training. Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. Preprint. [pdf] [project] (GPT)
  7. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. NAACL 2019. [pdf] [code & model]
  8. Language Models are Unsupervised Multitask Learners. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. Preprint. [pdf] [code] (GPT-2)
  9. ERNIE: Enhanced Language Representation with Informative Entities. Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun and Qun Liu. ACL 2019. [pdf] [code & model] (ERNIE (Tsinghua) )
  10. ERNIE: Enhanced Representation through Knowledge Integration. Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian and Hua Wu. Preprint. [pdf] [code] (ERNIE (Baidu) )
  11. Defending Against Neural Fake News. Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, Yejin Choi. NeurIPS 2019. [pdf] [project] (Grover)
  12. Cross-lingual Language Model Pretraining. Guillaume Lample, Alexis Conneau. NeurIPS 2019. [pdf] [code & model] (XLM)
  13. Multi-Task Deep Neural Networks for Natural Language Understanding. Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao. ACL 2019. [pdf] [code & model] (MT-DNN)
  14. MASS: Masked Sequence to Sequence Pre-training for Language Generation. Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. ICML 2019. [pdf] [code & model]
  15. Unified Language Model Pre-training for Natural Language Understanding and Generation. Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, Hsiao-Wuen Hon. Preprint. [pdf] (UniLM)
  16. XLNet: Generalized Autoregressive Pretraining for Language Understanding. Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. NeurIPS 2019. [pdf] [code & model]
  17. RoBERTa: A Robustly Optimized BERT Pretraining Approach. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. Preprint. [pdf] [code & model]
  18. SpanBERT: Improving Pre-training by Representing and Predicting Spans. Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, Omer Levy. Preprint. [pdf] [code & model]
  19. Knowledge Enhanced Contextual Word Representations. Matthew E. Peters, Mark Neumann, Robert L. Logan IV, Roy Schwartz, Vidur Joshi, Sameer Singh, Noah A. Smith. EMNLP 2019. [pdf] (KnowBert)
  20. VisualBERT: A Simple and Performant Baseline for Vision and Language. Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. Preprint. [pdf] [code & model]
  21. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan Lee. NeurIPS 2019. [pdf] [code & model]
  22. VideoBERT: A Joint Model for Video and Language Representation Learning. Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, Cordelia Schmid. ICCV 2019. [pdf]
  23. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. Hao Tan, Mohit Bansal. EMNLP 2019. [pdf] [code & model]
  24. VL-BERT: Pre-training of Generic Visual-Linguistic Representations. Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. Preprint. [pdf]
  25. Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training. Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang, Ming Zhou. Preprint. [pdf]
  26. K-BERT: Enabling Language Representation with Knowledge Graph. Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, Ping Wang. Preprint. [pdf]
  27. Fusion of Detected Objects in Text for Visual Question Answering. Chris Alberti, Jeffrey Ling, Michael Collins, David Reitter. EMNLP 2019. [pdf] (B2T2)
  28. Contrastive Bidirectional Transformer for Temporal Representation Learning. Chen Sun, Fabien Baradel, Kevin Murphy, Cordelia Schmid. Preprint. [pdf] (CBT)
  29. ERNIE 2.0: A Continual Pre-training Framework for Language Understanding. Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang. Preprint. [pdf] [code]
  30. 75 Languages, 1 Model: Parsing Universal Dependencies Universally. Dan Kondratyuk, Milan Straka. EMNLP 2019. [pdf] [code & model] (UDify)
  31. Pre-Training with Whole Word Masking for Chinese BERT. Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu. Preprint. [pdf] [code & model] (Chinese-BERT-wwm)
  32. UNITER: Learning UNiversal Image-TExt Representations. Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, Jingjing Liu. Preprint. [pdf]
  33. MultiFiT: Efficient Multi-lingual Language Model Fine-tuning. Julian Eisenschlos, Sebastian Ruder, Piotr Czapla, Marcin Kardas, Sylvain Gugger, Jeremy Howard. EMNLP 2019. [pdf] [code & model]
  34. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Preprint. [pdf] [code & model] (T5)
  35. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer. ACL 2020. [pdf]
  36. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. ICLR 2020. [pdf]
  37. A Mutual Information Maximization Perspective of Language Representation Learning. Lingpeng Kong, Cyprien de Masson d'Autume, Lei Yu, Wang Ling, Zihang Dai, Dani Yogatama. ICLR 2020. [pdf]
  38. StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding. Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei Peng, Luo Si. ICLR 2020. [pdf]
  39. Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scorings. Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, Jason Weston. ICLR 2020. [pdf]
  40. FreeLB: Enhanced Adversarial Training for Language Understanding. Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas Goldstein, Jingjing Liu. ICLR 2020. [pdf]
  41. Multilingual Alignment of Contextual Word Representations. Steven Cao, Nikita Kitaev, Dan Klein. ICLR 2020. [pdf]
  42. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. Pengcheng Yin, Graham Neubig, Wen-tau Yih, Sebastian Riedel. ACL 2020. [pdf] [code]
  43. BERTRAM: Improved Word Embeddings Have Big Impact on Contextualized Model Performance. Timo Schick, Hinrich Schutze. ACL 2020. [pdf]
  44. TAPAS: Weakly Supervised Table Parsing via Pre-training. Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno, Julian Martin Eisenschlos. ACL 2020. [pdf]
  45. On the Sentence Embeddings from Pre-trained Language Models. Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, Lei Li. EMNLP 2020. [pdf]
  46. An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training. Kristjan Arumae, Qing Sun, Parminder Bhatia. EMNLP 2020. [pdf]
  47. Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information. Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou, Lei Li. EMNLP 2020. [pdf]
  48. Pre-Training Transformers as Energy-Based Cloze Models. Kevin Clark, Minh-Thang Luong, Quoc Le, Christopher D. Manning. EMNLP 2020. [pdf]
  49. PatchBERT: Just-in-Time, Out-of-Vocabulary Patching. Sangwhan Moon, Naoaki Okazaki. EMNLP 2020. [pdf]
  50. Pre-training via Paraphrasing. Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, Luke Zettlemoyer. NeurIPS 2020. [pdf]
  51. ConvBERT: Improving BERT with Span-based Dynamic Convolution. Zi-Hang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. NeurIPS 2020. [pdf]

Papers on Model Compression & Acceleration

  1. TinyBERT: Distilling BERT for Natural Language Understanding. Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, Qun Liu. Preprint. [pdf] [code & model]
  2. Distilling Task-Specific Knowledge from BERT into Simple Neural Networks. Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, Jimmy Lin. Preprint. [pdf]
  3. Patient Knowledge Distillation for BERT Model Compression. Siqi Sun, Yu Cheng, Zhe Gan, Jingjing Liu. EMNLP 2019. [pdf] [code]
  4. Model Compression with Multi-Task Knowledge Distillation for Web-scale Question Answering System. Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, Daxin Jiang. Preprint. [pdf]
  5. PANLP at MEDIQA 2019: Pre-trained Language Models, Transfer Learning and Knowledge Distillation. Wei Zhu, Xiaofeng Zhou, Keqiang Wang, Xun Luo, Xiepeng Li, Yuan Ni, Guotong Xie. The 18th BioNLP workshop. [pdf]
  6. Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding. Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao. Preprint. [pdf] [code & model]
  7. Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation. Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. Preprint. [pdf]
  8. Small and Practical BERT Models for Sequence Labeling. Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Arivazhagan, Xin Li, Amelia Archer. EMNLP 2019. [pdf]
  9. Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer. Preprint. [pdf]
  10. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. ICLR 2020. [pdf]
  11. Extreme Language Model Compression with Optimal Subwords and Shared Projections. Sanqiang Zhao, Raghav Gupta, Yang Song, Denny Zhou. Preprint. [pdf]
  12. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf. Preprint. [pdf]
  13. Reducing Transformer Depth on Demand with Structured Dropout. Angela Fan, Edouard Grave, Armand Joulin. ICLR 2020. [pdf]
  14. Thieves on Sesame Street! Model Extraction of BERT-based APIs. Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, Mohit Iyyer. ICLR 2020. [pdf]
  15. DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, Jimmy Lin. ACL 2020. [pdf]
  16. Contrastive Distillation on Intermediate Representations for Language Model Compression. Siqi Sun, Zhe Gan, Yuwei Fang, Yu Cheng, Shuohang Wang, Jingjing Liu. EMNLP 2020. [pdf]
  17. BERT-of-Theseus: Compressing BERT by Progressive Module Replacing. Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou. EMNLP 2020. [pdf]
  18. TernaryBERT: Distillation-aware Ultra-low Bit BERT. Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, Qun Liu. EMNLP 2020. [pdf]
  19. When BERT Plays the Lottery, All Tickets Are Winning. Sai Prasanna, Anna Rogers, Anna Rumshisky. EMNLP 2020. [pdf]
  20. Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing. Zihang Dai, Guokun Lai, Yiming Yang, Quoc Le. NeurIPS 2020. [pdf]
  21. DynaBERT: Dynamic BERT with Adaptive Width and Depth. Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. NeurIPS 2020. [pdf]
  22. BERT Loses Patience: Fast and Robust Inference with Early Exit. Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, Furu Wei. NeurIPS 2020. [pdf]

Papers on Model Analysis

  1. Revealing the Dark Secrets of BERT. Olga Kovaleva, Alexey Romanov, Anna Rogers, Anna Rumshisky. EMNLP 2019. [pdf]
  2. How Does BERT Answer Questions? A Layer-Wise Analysis of Transformer Representations. Betty van Aken, Benjamin Winter, Alexander Löser, Felix A. Gers. CIKM 2019. [pdf]
  3. Are Sixteen Heads Really Better than One?. Paul Michel, Omer Levy, Graham Neubig. Preprint. [pdf] [code]
  4. Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment. Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits. Preprint. [pdf] [code]
  5. BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model. Alex Wang, Kyunghyun Cho. NeuralGen 2019. [pdf] [code]
  6. Linguistic Knowledge and Transferability of Contextual Representations. Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, Noah A. Smith. NAACL 2019. [pdf]
  7. What Does BERT Look At? An Analysis of BERT's Attention. Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning. BlackBoxNLP 2019. [pdf] [code]
  8. Open Sesame: Getting Inside BERT's Linguistic Knowledge. Yongjie Lin, Yi Chern Tan, Robert Frank. BlackBoxNLP 2019. [pdf] [code]
  9. Analyzing the Structure of Attention in a Transformer Language Model. Jesse Vig, Yonatan Belinkov. BlackBoxNLP 2019. [pdf]
  10. Blackbox meets blackbox: Representational Similarity and Stability Analysis of Neural Language Models and Brains. Samira Abnar, Lisa Beinborn, Rochelle Choenni, Willem Zuidema. BlackBoxNLP 2019. [pdf]
  11. BERT Rediscovers the Classical NLP Pipeline. Ian Tenney, Dipanjan Das, Ellie Pavlick. ACL 2019. [pdf]
  12. How multilingual is Multilingual BERT?. Telmo Pires, Eva Schlinger, Dan Garrette. ACL 2019. [pdf]
  13. What Does BERT Learn about the Structure of Language?. Ganesh Jawahar, Benoît Sagot, Djamé Seddah. ACL 2019. [pdf]
  14. Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT. Shijie Wu, Mark Dredze. EMNLP 2019. [pdf]
  15. How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings. Kawin Ethayarajh. EMNLP 2019. [pdf]
  16. Probing Neural Network Comprehension of Natural Language Arguments. Timothy Niven, Hung-Yu Kao. ACL 2019. [pdf] [code]
  17. Universal Adversarial Triggers for Attacking and Analyzing NLP. Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh. EMNLP 2019. [pdf] [code]
  18. The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives. Elena Voita, Rico Sennrich, Ivan Titov. EMNLP 2019. [pdf]
  19. Do NLP Models Know Numbers? Probing Numeracy in Embeddings. Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, Matt Gardner. EMNLP 2019. [pdf]
  20. Investigating BERT's Knowledge of Language: Five Analysis Methods with NPIs. Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Hagen Blix, Yining Nie, Anna Alsop, Shikha Bordia, Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason Phang, Anhad Mohananey, Phu Mon Htut, Paloma Jeretič, Samuel R. Bowman. EMNLP 2019. [pdf] [code]
  21. Visualizing and Understanding the Effectiveness of BERT. Yaru Hao, Li Dong, Furu Wei, Ke Xu. EMNLP 2019. [pdf]
  22. Visualizing and Measuring the Geometry of BERT. Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Viégas, Martin Wattenberg. NeurIPS 2019. [pdf]
  23. On the Validity of Self-Attention as Explanation in Transformer Models. Gino Brunner, Yang Liu, Damián Pascual, Oliver Richter, Roger Wattenhofer. Preprint. [pdf]
  24. Transformer Dissection: An Unified Understanding for Transformer's Attention via the Lens of Kernel. Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, Ruslan Salakhutdinov. EMNLP 2019. [pdf]
  25. Language Models as Knowledge Bases? Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, Sebastian Riedel. EMNLP 2019, [pdf] [code]
  26. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks. Matthew E. Peters, Sebastian Ruder, Noah A. Smith. RepL4NLP 2019, [pdf]
  27. On the Cross-lingual Transferability of Monolingual Representations. Mikel Artetxe, Sebastian Ruder, Dani Yogatama. Preprint, [pdf] [dataset]
  28. A Structural Probe for Finding Syntax in Word Representations. John Hewitt, Christopher D. Manning. NAACL 2019. [pdf]
  29. Assessing BERT’s Syntactic Abilities. Yoav Goldberg. Technical Report. [pdf]
  30. What do you learn from context? Probing for sentence structure in contextualized word representations. Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R. Thomas McCoy, Najoung Kim, Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, and Ellie Pavlick. ICLR 2019. [pdf]
  31. Can You Tell Me How to Get Past Sesame Street? Sentence-Level Pretraining Beyond Language Modeling. Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappagari, R. Thomas McCoy, Roma Patel, Najoung Kim, Ian Tenney, Yinghui Huang, Katherin Yu, Shuning Jin, Berlin Chen, Benjamin Van Durme, Edouard Grave, Ellie Pavlick, Samuel R. Bowman. ACL 2019. [pdf]
  32. BERT is Not an Interlingua and the Bias of Tokenization. Jasdeep Singh, Bryan McCann, Richard Socher, and Caiming Xiong. DeepLo 2019. [pdf] [dataset]
  33. What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. Preprint. [pdf] [code]
  34. How Language-Neutral is Multilingual BERT?. Jindřich Libovický, Rudolf Rosa, and Alexander Fraser. Preprint. [pdf]
  35. Cross-Lingual Ability of Multilingual BERT: An Empirical Study. Karthikeyan K, Zihan Wang, Stephen Mayhew, Dan Roth. ICLR 2020. [pdf]
  36. Finding Universal Grammatical Relations in Multilingual BERT. Ethan A. Chi, John Hewitt, Christopher D. Manning. ACL 2020. [pdf]
  37. Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner, Hinrich Schütze. ACL 2020. [pdf]
  38. Perturbed Masking: Parameter-free Probing for Analyzing and Interpreting BERT. Zhiyong Wu, Yun Chen, Ben Kao, Qun Liu. ACL 2020. [pdf]
  39. Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-trained Language Models. Bill Yuchen Lin, Seyeon Lee, Rahul Khanna and Xiang Ren. EMNLP 2020. [pdf]
  40. Identifying Elements Essential for BERT’s Multilinguality. Philipp Dufter, Hinrich Schütze. EMNLP 2020. [pdf]
  41. AUTOPROMPT: Eliciting Knowledge from Language Models with Automatically Generated Prompts. Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, Sameer Singh. EMNLP 2020. [pdf]
  42. The Lottery Ticket Hypothesis for Pre-trained BERT Networks. Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin. NeurIPS 2020. [pdf]

Papers on Finetuning or Adaptation

  1. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization. Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, Tuo Zhao. ACL 2020. [pdf]
  2. Do you have the right scissors? Tailoring Pre-trained Language Models via Monte-Carlo Methods. Ning Miao, Yuxuan Song, Hao Zhou, Lei Li. ACL 2020. [pdf]
  3. ExpBERT: Representation Engineering with Natural Language Explanations. Shikhar Murty, Pang Wei Koh, Percy Liang. ACL 2020. [pdf]
  4. Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks. Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, Noah A. Smith. ACL 2020. [pdf]
  5. Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting. Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, Xiangzhan Yu. EMNLP 2020. [pdf]
  6. Masking as an Efficient Alternative to Finetuning for Pretrained Language Models. Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, Hinrich Schütze. EMNLP 2020. [pdf]
  7. CogLTX: Applying BERT to Long Texts. Ming Ding, Chang Zhou, Hongxia Yang, Jie Tang. NeurIPS 2020. [pdf]

Papers on Prompt-based Tuning

Here is our new paper list on prompt-based tuning for pre-trained language models. [repo]

Tutorial & Resource

  1. Transfer Learning in Natural Language Processing. Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, Thomas Wolf. NAACL 2019. [slides]
  2. Transformers: State-of-the-art Natural Language Processing. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Jamie Brew. EMNLP 2020. [pdf] [code]

More Repositories

1

GNNPapers

Must-read papers on graph neural networks (GNN)
15,490
star
2

WantWords

An open-source online reverse dictionary.
JavaScript
6,933
star
3

OpenPrompt

An Open-Source Framework for Prompt-Learning.
Python
4,323
star
4

OpenNRE

An Open-Source Package for Neural Relation Extraction (NRE)
Python
4,322
star
5

PromptPapers

Must-read papers on prompt-based tuning for pre-trained language models.
4,059
star
6

OpenKE

An Open-Source Package for Knowledge Embedding (KE)
Python
3,813
star
7

NRLPapers

Must-read papers on network representation learning (NRL) / network embedding (NE)
TeX
2,524
star
8

UltraChat

Large-scale, Informative, and Diverse Multi-round Chat Data (and Models)
Python
2,225
star
9

THULAC-Python

An Efficient Lexical Analyzer for Chinese
Python
1,997
star
10

OpenNE

An Open-Source Package for Network Embedding (NE)
Python
1,683
star
11

KRLPapers

Must-read papers on knowledge representation learning (KRL) / knowledge embedding (KE)
TeX
1,532
star
12

TAADpapers

Must-read Papers on Textual Adversarial Attack and Defense
Python
1,505
star
13

ERNIE

Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"
Python
1,408
star
14

KB2E

Knowledge Graph Embeddings including TransE, TransH, TransR and PTransE
C++
1,360
star
15

NREPapers

Must-read papers on neural relation extraction (NRE)
TeX
1,028
star
16

OpenDelta

A plug-and-play library for parameter-efficient-tuning (Delta Tuning)
Python
991
star
17

WebCPM

Official codes for ACL 2023 paper "WebCPM: Interactive Web Search for Chinese Long-form Question Answering"
HTML
977
star
18

OpenCLaP

Open Chinese Language Pre-trained Model Zoo
977
star
19

RCPapers

Must-read papers on Machine Reading Comprehension
890
star
20

ToolLearningPapers

865
star
21

NRE

Neural Relation Extraction, including CNN, PCNN, CNN+ATT, PCNN+ATT
C++
812
star
22

THULAC

An Efficient Lexical Analyzer for Chinese
C++
790
star
23

FewRel

A Large-Scale Few-Shot Relation Extraction Dataset
Python
727
star
24

THUOCL

THUOCL(THU Open Chinese Lexicon)中文词库
697
star
25

Chinese_Rumor_Dataset

中文谣言数据
693
star
26

OpenAttack

An Open-Source Package for Textual Adversarial Attack.
Python
682
star
27

DocRED

Dataset and codes for ACL 2019 DocRED: A Large-Scale Document-Level Relation Extraction Dataset.
Python
609
star
28

OpenHowNet

Core Data of HowNet and OpenHowNet Python API
Python
608
star
29

TensorFlow-TransX

An implementation of TransE and its extended models for Knowledge Representation Learning on TensorFlow
Python
514
star
30

LegalPapers

Must-read Papers on Legal Intelligence
465
star
31

CAIL

Chinese AI & Law Challenge
449
star
32

OpenMatch

An Open-Source Package for Information Retrieval.
Python
447
star
33

BERT-KPE

Python
443
star
34

Fast-TransX

An Efficient implementation of TransE and its extended models for Knowledge Representation Learning
C++
401
star
35

TensorFlow-Summarization

Python
390
star
36

Few-NERD

Code and data of ACL 2021 paper "Few-NERD: A Few-shot Named Entity Recognition Dataset"
Python
385
star
37

SOS4NLP

Survey of Surveys for Natural Language Processing (SOS4NLP)
327
star
38

THULAC-Java

An Efficient Lexical Analyzer for Chinese
Java
325
star
39

BMCourse

The repo for Tsinghua summer course: Interdisciplinary Seminar on Big Models
Python
321
star
40

InfLLM

The code of our paper "InfLLM: Unveiling the Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with Training-Free Memory"
Python
287
star
41

NSC

Neural Sentiment Classification
Python
286
star
42

LLaVA-UHD

LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution Images
Python
276
star
43

DeltaPapers

Must-read Papers of Parameter-Efficient Tuning (Delta Tuning) Methods on Pre-trained Models.
273
star
44

Chinese_NRE

Source code for ACL 2019 paper "Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge"
Python
268
star
45

PL-Marker

Source code for "Packed Levitated Marker for Entity and Relation Extraction"
Python
255
star
46

LEGENT

Open Platform for Embodied Agents
Python
250
star
47

SE-WRL

Improved Word Representation Learning with Sememes
C
197
star
48

SCPapers

Must-read Papers on Sememe Computation
196
star
49

THUCTC

An Efficient Chinese Text Classifier
Java
196
star
50

KnowledgeablePromptTuning

kpt code
Python
192
star
51

CANE

Source code and datasets of "CANE: Context-Aware Network Embedding for Relation Modeling"
Python
191
star
52

JointNRE

Joint Neural Relation Extraction with Text and KGs
Python
187
star
53

HATT-Proto

Code and dataset of AAAI2019 paper Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
Python
185
star
54

LegalPLMs

Source code and checkpoints for legal pre-trained language models.
Python
169
star
55

NLP-THU

NLP Course Material & QA
168
star
56

KernelGAT

The source codes for Fine-grained Fact Verification with Kernel Graph Attention Network.
Python
161
star
57

PTR

Prompt Tuning with Rules
Python
155
star
58

EntityDuetNeuralRanking

Entity-Duet Neural Ranking Model
Python
153
star
59

OOP-THU

OOP Course Material & QA
149
star
60

OpenBackdoor

An open-source toolkit for textual backdoor attack and defense (NeurIPS 2022 D&B, Spotlight)
Python
148
star
61

Auto_CLIWC

Code for Chinese LIWC Lexicon Expansion via Hierarchical Classification of Word Embeddings with Sememe Attention (AAAI18)
Python
142
star
62

attribute_charge

The source code of our COLING'18 paper "Few-Shot Charge Prediction with Discriminative Legal Attributes".
Python
128
star
63

ConceptFlow

Python
119
star
64

THUCKE

THU Chinese Keyphrase Extraction Toolkit
C++
118
star
65

CAIL2018

Python
112
star
66

Neural-Snowball

Code and dataset of AAAI2020 Paper Neural Snowball for Few-Shot Relation Learning
Python
112
star
67

KR-EAR

Knowledge Representation Learning with Entities, Attributes and Relations
C++
111
star
68

ChatEval

Codes for our paper "ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate"
Python
109
star
69

MultiRD

Code and data of the AAAI-20 paper "Multi-channel Reverse Dictionary Model"
Python
106
star
70

TransNet

Source code and datasets of IJCAI2017 paper "TransNet: Translation-Based Network Representation Learning for Social Relation Extraction".
Jupyter Notebook
103
star
71

RE-Context-or-Names

Bert-based models(BERT, MTB, CP) for relation extraction.
Python
101
star
72

AGE

Source code and dataset for KDD 2020 paper "Adaptive Graph Encoder for Attributed Graph Embedding"
Python
99
star
73

TopJudge

Python
97
star
74

Prompt-Transferability

On Transferability of Prompt Tuning for Natural Language Processing
Python
97
star
75

GEAR

Source code for ACL 2019 paper "GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification"
Python
95
star
76

HNRE

Hierarchical Neural Relation Extraction
Python
95
star
77

LEVEN

Source code and dataset for ACL2022 Findings Paper "LEVEN: A Large-Scale Chinese Legal Event Detection dataset"
Python
94
star
78

SememePSO-Attack

Code and data of the ACL 2020 paper "Word-level Textual Adversarial Attacking as Combinatorial Optimization"
Python
86
star
79

HMEAE

Source code for EMNLP-IJCNLP 2019 paper "HMEAE: Hierarchical Modular Event Argument Extraction".
Python
85
star
80

XQA

Dataset and baseline for ACL 2019 paper "XQA: A Cross-lingual Open-domain Question Answering Dataset"
Python
84
star
81

ERICA

Source code for ACL 2021 paper "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning"
Python
83
star
82

CLAIM

78
star
83

TKRL

Representation Learning of Knowledge Graphs with Hierarchical Types (IJCAI-2016)
C++
76
star
84

TLNN

Source code for EMNLP-IJCNLP 2019 paper "Event Detection with Trigger-Aware Lattice Neural Network".
Python
75
star
85

NeuIRPapers

Must-read Papers on Neural Information Retrieval
72
star
86

MMDW

Max-margin DeepWalk
Java
71
star
87

KV-PLM

Source code for "A Deep-learning System Bridging Molecule Structure and Biomedical Text with Comprehension Comparable to Human Professionals"
Python
71
star
88

KNET

Neural Entity Typing with Knowledge Attention
Python
69
star
89

SelectiveMasking

Source code for "Train No Evil: Selective Masking for Task-Guided Pre-Training"
Python
68
star
90

MoEfication

Python
66
star
91

Adv-ED

Source code and dataset for NAACL 2019 paper "Adversarial Training for Weakly Supervised Event Detection".
Python
66
star
92

CorefBERT

Source code for EMNLP 2020 paper "Coreferential Reasoning Learning for Language Representation"
Python
65
star
93

ConversationQueryRewriter

Code and Data for SIGIR 2020 Paper "Few-Shot Generative Conversational Query Rewriting"
Roff
63
star
94

Ouroboros

Ouroboros: Speculative Decoding with Large Model Enhanced Drafting (EMNLP 2024 main)
Python
62
star
95

MuGNN

Source code for ACL2019 paper "Multi-Channel Graph Neural Network for Entity Alignment".
Python
61
star
96

sememe_prediction

Codes for Lexical Sememe Prediction via Word Embeddings and Matrix Factorization (IJCAI 2017).
Python
60
star
97

DIAG-NRE

Source code for ACL 2019 paper "DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction".
Python
59
star
98

topical_word_embeddings

Topical Word Embeddings
Python
57
star
99

QuoteR

Official code and data of the ACL 2022 paper "QuoteR: A Benchmark of Quote Recommendation for Writing"
Python
57
star
100

paragraph2vec

Paragraph Vector Implementation
Python
56
star