• Stars
    star
    890
  • Rank 51,276 (Top 2 %)
  • Language
  • Created about 6 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Must-read papers on Machine Reading Comprehension

Must-read papers on Machine Reading Comprehension.

Contributed by Yankai Lin, Deming Ye and Haozhe Ji.

Model Architecture

  1. Memory networks. Jason Weston, Sumit Chopra, and Antoine Bordes. arXiv preprint arXiv:1410.3916 (2014). paper
  2. Teaching Machines to Read and Comprehend. Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. NIPS 2015. paper
  3. Text Understanding with the Attention Sum Reader Network. Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. ACL 2016. paper
  4. A Thorough Examination of the Cnn/Daily Mail Reading Comprehension Task. Danqi Chen, Jason Bolton, and Christopher D. Manning. ACL 2016. paper
  5. Long Short-Term Memory-Networks for Machine Reading. Jianpeng Cheng, Li Dong, and Mirella Lapata. EMNLP 2016. paper
  6. Key-value Memory Networks for Directly Reading Documents. Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason Weston. EMNLP 2016. paper
  7. Modeling Human Reading with Neural Attention. Michael Hahn and Frank Keller. EMNLP 2016. paper
  8. Learning Recurrent Span Representations for Extractive Question Answering Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, and Jonathan Berant. arXiv preprint arXiv:1611.01436 (2016). paper
  9. Multi-Perspective Context Matching for Machine Comprehension. Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. arXiv preprint arXiv:1612.04211. paper
  10. Natural Language Comprehension with the Epireader. Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer Suleman. EMNLP 2016. paper
  11. Iterative Alternating Neural Attention for Machine Reading. Alessandro Sordoni, Philip Bachman, Adam Trischler, and Yoshua Bengio. arXiv preprint arXiv:1606.02245 (2016). paper
  12. Bidirectional Attention Flow for Machine Comprehension. Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. ICLR 2017. paper
  13. Machine Comprehension Using Match-lstm and Answer Pointer. Shuohang Wang and Jing Jiang. arXiv preprint arXiv:1608.07905 (2016). paper
  14. Gated Self-matching Networks for Reading Comprehension and Question Answering. Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. ACL 2017. paper
  15. Attention-over-attention Neural Networks for Reading Comprehension. Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. ACL 2017. paper
  16. Gated-attention Readers for Text Comprehension. Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. ACL 2017. paper
  17. A Constituent-Centric Neural Architecture for Reading Comprehension. Pengtao Xie and Eric Xing. ACL 2017. paper
  18. Structural Embedding of Syntactic Trees for Machine Comprehension. Rui Liu, Junjie Hu, Wei Wei, Zi Yang, and Eric Nyberg. EMNLP 2017. paper
  19. Accurate Supervised and Semi-Supervised Machine Reading for Long Documents. Izzeddin Gur, Daniel Hewlett, Alexandre Lacoste, and Llion Jones. EMNLP 2017. paper
  20. MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension. Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai, and Xiaofei He. arXiv preprint arXiv:1707.09098 (2017). paper
  21. Dynamic Coattention Networks For Question Answering. Caiming Xiong, Victor Zhong, and Richard Socher. ICLR 2017 paper
  22. R-NET: Machine Reading Comprehension with Self-matching Networks. Natural Language Computing Group, Microsoft Research Asia. paper
  23. Reasonet: Learning to Stop Reading in Machine Comprehension. Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. KDD 2017. paper
  24. FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension. Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and Weizhu Chen. ICLR 2018. paper
  25. Making Neural QA as Simple as Possible but not Simpler. Dirk Weissenborn, Georg Wiese, and Laura Seiffe. CoNLL 2017. paper
  26. Efficient and Robust Question Answering from Minimal Context over Documents. Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. ACL 2018. paper
  27. Simple and Effective Multi-Paragraph Reading Comprehension. Christopher Clark and Matt Gardner. ACL 2018. paper
  28. Neural Speed Reading via Skim-RNN. Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. ICLR2018. paper
  29. Hierarchical Attention Flow forMultiple-Choice Reading Comprehension. Haichao Zhu,� Furu Wei, Bing Qin, and Ting Liu. AAAI 2018. paper
  30. Towards Reading Comprehension for Long Documents. Yuanxing Zhang, Yangbin Zhang, Kaigui Bian, and Xiaoming Li. IJCAI 2018. paper
  31. Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension. Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu, and Tian Wu. ACL 2018. paper
  32. Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification. Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu, Hua Wu, Sujian Li, and Haifeng Wang. ACL 2018. paper
  33. Reinforced Mnemonic Reader for Machine Reading Comprehension. Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu, Furu Wei, and Ming Zhou. IJCAI 2018. paper
  34. Stochastic Answer Networks for Machine Reading Comprehension. Xiaodong Liu, Yelong Shen, Kevin Duh, and Jianfeng Gao. ACL 2018. paper
  35. Multi-Granularity Hierarchical Attention Fusion Networks for Reading Comprehension and Question Answering. Wei Wang, Ming Yan, and Chen Wu. ACL 2018. paper
  36. A Multi-Stage Memory Augmented Neural Networkfor Machine Reading Comprehension. Seunghak Yu, Sathish Indurthi, Seohyun Back, and Haejun Lee. ACL 2018 workshop. paper
  37. S-NET: From Answer Extraction to Answer Generation for Machine Reading Comprehension. Chuanqi Tan, Furu Wei, Nan Yang, Bowen Du, Weifeng Lv, and Ming Zhou. AAAI2018. paper
  38. Ask the Right Questions: Active Question Reformulation with Reinforcement Learning. Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, and Wei Wang. ICLR2018. paper
  39. QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension. Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V. Le. ICLR2018. paper
  40. Read + Verify: Machine Reading Comprehension with Unanswerable Questions. Minghao Hu, Furu Wei, Yuxing Peng, Zhen Huang, Nan Yang, and Ming Zhou. AAAI2019. paper
  41. Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering. Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, Caiming Xiong. paper

Utilizing External Knowledge

  1. Leveraging Knowledge Bases in LSTMs for Improving Machine Reading. Bishan Yang and Tom Mitchell. ACL 2017. paper
  2. Learned in Translation: Contextualized Word Vectors. Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. arXiv preprint arXiv:1708.00107 (2017). paper
  3. Knowledgeable Reader: Enhancing Cloze-Style Reading Comprehension with External Commonsense Knowledge. Todor Mihaylov and Anette Frank. ACL 2018. paper
  4. A Comparative Study of Word Embeddings for Reading Comprehension. Bhuwan Dhingra, Hanxiao Liu, Ruslan Salakhutdinov, and William W. Cohen. arXiv preprint arXiv:1703.00993 (2017). paper
  5. Deep contextualized word representations. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. NAACL 2018. paper
  6. Improving Language Understanding by Generative Pre-Training. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. OpenAI. paper
  7. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. arXiv preprint arXiv:1810.04805 (2018). paper

Exploration

  1. Adversarial Examples for Evaluating Reading Comprehension Systems. Robin Jia, and Percy Liang. EMNLP 2017. paper
  2. Did the Model Understand the Question? Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan, and Kedar Dhamdhere. ACL 2018. paper

Open Domain Question Answering

  1. Reading Wikipedia to Answer Open-Domain Questions. Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. ACL 2017. paper
  2. R^3: Reinforced Reader-Ranker for Open-Domain Question Answering. Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. AAAI 2018. paper
  3. Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering. Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger, Gerald Tesauro, and Murray Campbell. ICLR 2018. paper
  4. Denoising Distantly Supervised Open-Domain Question Answering. Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. ACL 2018. paper
  5. Answering Complex Open-domain Questions Through Iterative Query Generation. Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, Christopher D. Manning. EMNLP 2019. paper

Datasets

  1. (SQuAD 1.0) SQuAD: 100,000+ Questions for Machine Comprehension of Text. Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. EMNLP 2016. paper
  2. (SQuAD 2.0) Know What You Don't Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia, and Percy Liang. ACL 2018. paper
  3. (MS MARCO) MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. arXiv preprint arXiv:1611.09268 (2016). paper
  4. (Quasar) Quasar: Datasets for Question Answering by Search and Reading. Bhuwan Dhingra, Kathryn Mazaitis, and William W. Cohen. arXiv preprint arXiv:1707.03904 (2017). paper
  5. (TriviaQA) TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension. Mandar Joshi, Eunsol Choi, Daniel S. Weld, Luke Zettlemoyer. arXiv preprint arXiv:1705.03551 (2017). paper
  6. (SearchQA) SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine. Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Guney, Volkan Cirik, and Kyunghyun Cho. arXiv preprint arXiv:1704.05179 (2017). paper
  7. (QuAC) QuAC : Question Answering in Context. Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. arXiv preprint arXiv:1808.07036 (2018). paper
  8. (CoQA) CoQA: A Conversational Question Answering Challenge. Siva Reddy, Danqi Chen, and Christopher D. Manning. arXiv preprint arXiv:1808.07042 (2018). paper
  9. (MCTest) MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text. Matthew Richardson, Christopher J.C. Burges, and Erin Renshaw. EMNLP 2013. paper.
  10. (CNN/Daily Mail) Teaching Machines to Read and Comprehend. Hermann, Karl Moritz, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. NIPS 2015. paper
  11. (CBT) The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations. Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. arXiv preprint arXiv:1511.02301 (2015). paper
  12. (bAbi) Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks. Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin, and Tomas Mikolov. arXiv preprint arXiv:1502.05698 (2015). paper
  13. (LAMBADA) The LAMBADA Dataset:Word Prediction Requiring a Broad Discourse Context. Denis Paperno, Germ ́an Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fern ́andez. ACL 2016. paper
  14. (SCT) LSDSem 2017 Shared Task: The Story Cloze Test. Nasrin Mostafazadeh, Michael Roth, Annie Louis,Nathanael Chambers, and James F. Allen. ACL 2017 workshop. paper
  15. (Who did What) Who did What: A Large-Scale Person-Centered Cloze Dataset Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. EMNLP 2016. paper
  16. (NewsQA) NewsQA: A Machine Comprehension Dataset. Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. arXiv preprint arXiv:1611.09830 (2016). paper
  17. (RACE) RACE: Large-scale ReAding Comprehension Dataset From Examinations. Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. EMNLP 2017. paper
  18. (ARC) Think you have Solved Question Answering?Try ARC, the AI2 Reasoning Challenge. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. arXiv preprint arXiv:1803.05457 (2018). paper
  19. (MCScript) MCScript: A Novel Dataset for Assessing Machine Comprehension Using Script Knowledge. Simon Ostermann, Ashutosh Modi, Michael Roth, Stefan Thater, and Manfred Pinkal. arXiv preprint arXiv:1803.05223. paper
  20. (NarrativeQA) The NarrativeQA Reading Comprehension Challenge. Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, and Edward Grefenstette. TACL 2018. paper
  21. (DuoRC) DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension. Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. ACL 2018. paper
  22. (CLOTH) Large-scale Cloze Test Dataset Created by Teachers. Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy. EMNLP 2018. paper
  23. (DuReader) DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications. Wei He, Kai Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu, Qiaoqiao She, Xuan Liu, Tian Wu, and Haifeng Wang. ACL 2018 Workshop. paper
  24. (CliCR) CliCR: a Dataset of Clinical Case Reports for Machine Reading Comprehension. Simon Suster and Walter Daelemans. NAACL 2018. paper
  25. (QUOREF) Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning. Pradeep Dasigi, Nelson F. Liu, Ana Marasović, Noah A. Smith, Matt Gardner. EMNLP2019. paper

More Repositories

1

GNNPapers

Must-read papers on graph neural networks (GNN)
15,490
star
2

WantWords

An open-source online reverse dictionary.
JavaScript
6,933
star
3

OpenPrompt

An Open-Source Framework for Prompt-Learning.
Python
4,323
star
4

OpenNRE

An Open-Source Package for Neural Relation Extraction (NRE)
Python
4,322
star
5

PromptPapers

Must-read papers on prompt-based tuning for pre-trained language models.
4,059
star
6

OpenKE

An Open-Source Package for Knowledge Embedding (KE)
Python
3,813
star
7

PLMpapers

Must-read Papers on pre-trained language models.
3,161
star
8

NRLPapers

Must-read papers on network representation learning (NRL) / network embedding (NE)
TeX
2,524
star
9

UltraChat

Large-scale, Informative, and Diverse Multi-round Chat Data (and Models)
Python
2,225
star
10

THULAC-Python

An Efficient Lexical Analyzer for Chinese
Python
1,997
star
11

OpenNE

An Open-Source Package for Network Embedding (NE)
Python
1,683
star
12

KRLPapers

Must-read papers on knowledge representation learning (KRL) / knowledge embedding (KE)
TeX
1,532
star
13

TAADpapers

Must-read Papers on Textual Adversarial Attack and Defense
Python
1,505
star
14

ERNIE

Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"
Python
1,408
star
15

KB2E

Knowledge Graph Embeddings including TransE, TransH, TransR and PTransE
C++
1,360
star
16

NREPapers

Must-read papers on neural relation extraction (NRE)
TeX
1,028
star
17

OpenDelta

A plug-and-play library for parameter-efficient-tuning (Delta Tuning)
Python
991
star
18

WebCPM

Official codes for ACL 2023 paper "WebCPM: Interactive Web Search for Chinese Long-form Question Answering"
HTML
977
star
19

OpenCLaP

Open Chinese Language Pre-trained Model Zoo
977
star
20

ToolLearningPapers

865
star
21

NRE

Neural Relation Extraction, including CNN, PCNN, CNN+ATT, PCNN+ATT
C++
812
star
22

THULAC

An Efficient Lexical Analyzer for Chinese
C++
790
star
23

FewRel

A Large-Scale Few-Shot Relation Extraction Dataset
Python
727
star
24

THUOCL

THUOCL(THU Open Chinese Lexicon)中文词库
697
star
25

Chinese_Rumor_Dataset

中文谣言数据
693
star
26

OpenAttack

An Open-Source Package for Textual Adversarial Attack.
Python
682
star
27

DocRED

Dataset and codes for ACL 2019 DocRED: A Large-Scale Document-Level Relation Extraction Dataset.
Python
609
star
28

OpenHowNet

Core Data of HowNet and OpenHowNet Python API
Python
608
star
29

TensorFlow-TransX

An implementation of TransE and its extended models for Knowledge Representation Learning on TensorFlow
Python
514
star
30

LegalPapers

Must-read Papers on Legal Intelligence
465
star
31

CAIL

Chinese AI & Law Challenge
449
star
32

OpenMatch

An Open-Source Package for Information Retrieval.
Python
447
star
33

BERT-KPE

Python
443
star
34

Fast-TransX

An Efficient implementation of TransE and its extended models for Knowledge Representation Learning
C++
401
star
35

TensorFlow-Summarization

Python
390
star
36

Few-NERD

Code and data of ACL 2021 paper "Few-NERD: A Few-shot Named Entity Recognition Dataset"
Python
385
star
37

SOS4NLP

Survey of Surveys for Natural Language Processing (SOS4NLP)
327
star
38

THULAC-Java

An Efficient Lexical Analyzer for Chinese
Java
325
star
39

BMCourse

The repo for Tsinghua summer course: Interdisciplinary Seminar on Big Models
Python
321
star
40

InfLLM

The code of our paper "InfLLM: Unveiling the Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with Training-Free Memory"
Python
287
star
41

NSC

Neural Sentiment Classification
Python
286
star
42

LLaVA-UHD

LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution Images
Python
276
star
43

DeltaPapers

Must-read Papers of Parameter-Efficient Tuning (Delta Tuning) Methods on Pre-trained Models.
273
star
44

Chinese_NRE

Source code for ACL 2019 paper "Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge"
Python
268
star
45

PL-Marker

Source code for "Packed Levitated Marker for Entity and Relation Extraction"
Python
255
star
46

LEGENT

Open Platform for Embodied Agents
Python
250
star
47

SE-WRL

Improved Word Representation Learning with Sememes
C
197
star
48

SCPapers

Must-read Papers on Sememe Computation
196
star
49

THUCTC

An Efficient Chinese Text Classifier
Java
196
star
50

KnowledgeablePromptTuning

kpt code
Python
192
star
51

CANE

Source code and datasets of "CANE: Context-Aware Network Embedding for Relation Modeling"
Python
191
star
52

JointNRE

Joint Neural Relation Extraction with Text and KGs
Python
187
star
53

HATT-Proto

Code and dataset of AAAI2019 paper Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
Python
185
star
54

LegalPLMs

Source code and checkpoints for legal pre-trained language models.
Python
169
star
55

NLP-THU

NLP Course Material & QA
168
star
56

KernelGAT

The source codes for Fine-grained Fact Verification with Kernel Graph Attention Network.
Python
161
star
57

PTR

Prompt Tuning with Rules
Python
155
star
58

EntityDuetNeuralRanking

Entity-Duet Neural Ranking Model
Python
153
star
59

OOP-THU

OOP Course Material & QA
149
star
60

OpenBackdoor

An open-source toolkit for textual backdoor attack and defense (NeurIPS 2022 D&B, Spotlight)
Python
148
star
61

Auto_CLIWC

Code for Chinese LIWC Lexicon Expansion via Hierarchical Classification of Word Embeddings with Sememe Attention (AAAI18)
Python
142
star
62

attribute_charge

The source code of our COLING'18 paper "Few-Shot Charge Prediction with Discriminative Legal Attributes".
Python
128
star
63

ConceptFlow

Python
119
star
64

THUCKE

THU Chinese Keyphrase Extraction Toolkit
C++
118
star
65

CAIL2018

Python
112
star
66

Neural-Snowball

Code and dataset of AAAI2020 Paper Neural Snowball for Few-Shot Relation Learning
Python
112
star
67

KR-EAR

Knowledge Representation Learning with Entities, Attributes and Relations
C++
111
star
68

ChatEval

Codes for our paper "ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate"
Python
109
star
69

MultiRD

Code and data of the AAAI-20 paper "Multi-channel Reverse Dictionary Model"
Python
106
star
70

TransNet

Source code and datasets of IJCAI2017 paper "TransNet: Translation-Based Network Representation Learning for Social Relation Extraction".
Jupyter Notebook
103
star
71

RE-Context-or-Names

Bert-based models(BERT, MTB, CP) for relation extraction.
Python
101
star
72

AGE

Source code and dataset for KDD 2020 paper "Adaptive Graph Encoder for Attributed Graph Embedding"
Python
99
star
73

TopJudge

Python
97
star
74

Prompt-Transferability

On Transferability of Prompt Tuning for Natural Language Processing
Python
97
star
75

GEAR

Source code for ACL 2019 paper "GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification"
Python
95
star
76

HNRE

Hierarchical Neural Relation Extraction
Python
95
star
77

LEVEN

Source code and dataset for ACL2022 Findings Paper "LEVEN: A Large-Scale Chinese Legal Event Detection dataset"
Python
94
star
78

SememePSO-Attack

Code and data of the ACL 2020 paper "Word-level Textual Adversarial Attacking as Combinatorial Optimization"
Python
86
star
79

HMEAE

Source code for EMNLP-IJCNLP 2019 paper "HMEAE: Hierarchical Modular Event Argument Extraction".
Python
85
star
80

XQA

Dataset and baseline for ACL 2019 paper "XQA: A Cross-lingual Open-domain Question Answering Dataset"
Python
84
star
81

ERICA

Source code for ACL 2021 paper "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning"
Python
83
star
82

CLAIM

78
star
83

TKRL

Representation Learning of Knowledge Graphs with Hierarchical Types (IJCAI-2016)
C++
76
star
84

TLNN

Source code for EMNLP-IJCNLP 2019 paper "Event Detection with Trigger-Aware Lattice Neural Network".
Python
75
star
85

NeuIRPapers

Must-read Papers on Neural Information Retrieval
72
star
86

MMDW

Max-margin DeepWalk
Java
71
star
87

KV-PLM

Source code for "A Deep-learning System Bridging Molecule Structure and Biomedical Text with Comprehension Comparable to Human Professionals"
Python
71
star
88

KNET

Neural Entity Typing with Knowledge Attention
Python
69
star
89

SelectiveMasking

Source code for "Train No Evil: Selective Masking for Task-Guided Pre-Training"
Python
68
star
90

MoEfication

Python
66
star
91

Adv-ED

Source code and dataset for NAACL 2019 paper "Adversarial Training for Weakly Supervised Event Detection".
Python
66
star
92

CorefBERT

Source code for EMNLP 2020 paper "Coreferential Reasoning Learning for Language Representation"
Python
65
star
93

ConversationQueryRewriter

Code and Data for SIGIR 2020 Paper "Few-Shot Generative Conversational Query Rewriting"
Roff
63
star
94

Ouroboros

Ouroboros: Speculative Decoding with Large Model Enhanced Drafting (EMNLP 2024 main)
Python
62
star
95

MuGNN

Source code for ACL2019 paper "Multi-Channel Graph Neural Network for Entity Alignment".
Python
61
star
96

sememe_prediction

Codes for Lexical Sememe Prediction via Word Embeddings and Matrix Factorization (IJCAI 2017).
Python
60
star
97

DIAG-NRE

Source code for ACL 2019 paper "DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction".
Python
59
star
98

topical_word_embeddings

Topical Word Embeddings
Python
57
star
99

QuoteR

Official code and data of the ACL 2022 paper "QuoteR: A Benchmark of Quote Recommendation for Writing"
Python
57
star
100

paragraph2vec

Paragraph Vector Implementation
Python
56
star