• Stars
    star
    320
  • Rank 131,126 (Top 3 %)
  • Language
    Python
  • Created over 3 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

基于pytorch的中文三元组提取(命名实体识别+关系抽取)

pytorch_triplet_extraction


2023-05-12:

提供更简洁的代码,以及更方便的使用:https://github.com/taishan1994/BERT-Relation-Extraction

2022-09-26:保姆级教程来了!!!

这里以工业知识图谱关系抽取-高端装备制造知识图谱自动化构建 竞赛 - DataFountain为例,一步一步的进行。

  • 拷贝项目:git clone https://github.com/taishan1994/pytorch_triple_extraction.git

  • 下载预训练模型[chinese-roberta-wwm-ext](hfl/chinese-roberta-wwm-ext at main (huggingface.co))到model_hub/chinese-roberta-wwm-ext/下,需要的是config.json、pytorch_model.bin和vocab.txt,当然也可以去下载[chinese-bert-wwm-ext](hfl/chinese-bert-wwm-ext at main (huggingface.co))到model_hub/chinese-bert-wwm-ext/下。

  • 在data下新建一个数据集文件夹,针对该数据集是dgre,在dgre下新建好相应的一些文件夹,目录如下(文件夹内具体文件稍后再按步骤生成):

     data
     ----dgre
     --------mid_data  # 运行raw_data下的process.py后得到
     ----------------dev.json
     ----------------ent_labels.txt  # 实体名,这里就两种:subject和object
     ----------------ner_labels.txt  # 字符标签,BIO格式,共五种。
     ----------------train.json
     --------ner_final_data  # 在 bert_bilstm_crf_ner下运行preprocess.py后获得
     ----------------dev.pkl  
     ----------------train.pkl
     --------raw_data  # 原始数据
     ----------------evalA.json
     ----------------process.py  # 将数据处理得到mid_data下的train.json和devjson
     ----------------train.json
     --------re_final_data  # 在bert_re下运行prerocess.py后获得(数据量太大会有问题,后面舍弃了,改用data_loader.py)
     ----------------dev.pkl
     ----------------test.pkl
     ----------------train.pkl
     --------re_mid_data  # 运行re_process.py后获得
     ----------------dev.txt
     ----------------rels.txt  # 关系类别
     ----------------train.txt
     --------dgre_512_cut.txt  # 实体识别处理后可视化结果

    raw_data文件夹用于存储原始的数据。该竞赛原始数据由两部分组成,evalA.json(只有文本,没有标签)和train.json(训练数据),train.json里面每一行是一个字典,我们看看单条数据:

     {"ID": "AT0001", "text": "62号汽车故障报告综合情况:故障现象:加速后,丢开油门,发动机熄火。", "spo_list": [{"h": {"name": "发动机", "pos": [28, 31]}, "t": {"name": "熄火", "pos": [31, 33]}, "relation": "部件故障"}]}

    "h"表示关系主体,"t"表示关系客体,"relation"表示关系。在raw_data下新建一个process.py,该文件主要是将数据处理成之后我们需要的格式,在mid_data下这里看看处理完之后的数据是什么样子(由于只有train.json,因此我们需要对数据划分为训练集和验证集):

     [{"id": "AT0001", "text": "62号汽车故障报告综合情况:故障现象:加速后,丢开油门,发动机熄火。", "subject_labels": [["T0", "发动机", 28, 31, "部件故障"]], "object_labels": [["T0", "熄火", 31, 33, "部件故障"]]}, ...] 

    需要注意两个地方,每一个实体列表5项分别表示:[ID标识,实体,实体起始位置,实体结束位置,关系],subject_labels表示主体实体,object_labels表示客体实体,主体实体和客体实体之间通过ID标识连接。ent_labels.txt和ner_labels.txt自己新建然后输入以下信息就行:

     ent_labels.txt里subject
     object
     
     ner_labels.txt里O
     B-object
     I-object
     B-subject
     I-subject
  • 接下来我们解可以进行实体识别提取主体和客体了:

     cd bert_bilstm_crf_ner
     在preprocess.py里面我们需要修改以下一些地方dataset = "dgre"
     
     if dataset == "dgre":
         args.data_dir = '../data/dgre/'  # 数据集地址
         args.max_seq_len = 512  # 文本最大长度
     
     对于一个新的数据集我们只需要修改dataset为我们data的名字并新建一个if-else分支指定数据目录和文本最大长度最后运行python preprocess.py即可获得ner_final_data下数据接着在main.py里面修改data_name为"dgre"新建一个if-else分支用于输入预测文本if data_name == "dgre":
         raw_text = "211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物"
         
     最后通过以下指令训练验证测试和预测输入指令时把后面注释给删掉):
     python main.py \
     --bert_dir="../model_hub/chinese-bert-wwm-ext/" \  # 预训练模型名称
     --data_dir="../data/dgre/" \
     --log_dir="./logs/" \
     --output_dir="./checkpoints/" \
     --num_tags=5 \
     --seed=123 \
     --gpu_ids="0" \
     --max_seq_len=512 \  # 和preprocess.py里面的一致
     --lr=3e-5 \
     --crf_lr=3e-2 \
     --other_lr=3e-4 \
     --train_batch_size=8 \
     --train_epochs=5 \
     --eval_batch_size=8 \
     --max_grad_norm=1 \
     --warmup_proportion=0.1 \
     --adam_epsilon=1e-8 \
     --weight_decay=0.01 \
     --lstm_hidden=128 \
     --num_layers=1 \
     --use_lstm="False" \
     --use_crf="True" \
     --dropout_prob=0.3 \
     --dropout=0.3 
     
     结果precision    recall  f1-score   support
     
           object       0.67      0.78      0.72      1201
          subject       0.68      0.79      0.73      1177
     
        micro avg       0.67      0.78      0.72      2378
        macro avg       0.67      0.78      0.72      2378
     weighted avg       0.67      0.78      0.72      2378
     
     211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因1鼓风机故障 2鼓风机内有杂物
     [('鼓风机', 23, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('鼓风机', 76, 'subject'), ('有杂物', 80, 'object')]
  • 接着我们可以着手关系抽取了,在re_mid_data下新建一个rels.txt,里面输入该数据集的关系,这里是:

     部件故障
     性能故障
     检测工具
     组成
     未知

    我们新增了一项未知项,以解决主体和客体之间不存在关系的情况。在pytorch_triple_extraction/re_process.py里面修改路径为该数据集的路径,然后运行python re_process.py即可获得re_mid_data下的其它文件,看看里面数据:

     部件故障	故障现象该车最多只能跑到120KM/H,再踩#油门#就$不起作用$了;	24	27	29	34

    第一项为关系类别,第二项为文本,注意,我们在主体左右加入#标识,在客体左右加入$标识,最后四项是主客体的起始和结束位置。注意:这里索引都已经提前+1,因为bert文本前面会加一个[CLS]

     cd bert_re
     """以下舍弃了,数据量太大会有问题
     在preprocess.py里面,修改data_name = "dgre",并新增一个if-else分支,
     if data_name == "dgre":
         args.max_seq_len = 512
         args.data_dir = '../data/dgre/'
         re_mid_data_path = '../data/dgre/re_mid_data'
         
     最后运行python preprocess.py即可获得re_final_data下的文件。
     """
     
     在main.py里面我们需要做的是修改最后预测的那部分这里要根据自己数据修改text = '62号汽车故障报告综合情况:故障现象:加速后,丢开油门,#发动机#$熄火$。'
     ids = [29,	33,	34,	37]
     print('预测标签:', trainer.predict(tokenizer, text, id2label, args, ids))
     print('真实标签:', '部件故障')
     
     最后运行以下指令进行训练验证测试和预测python main.py \
     --bert_dir="../model_hub/chinese-bert-wwm-ext/" \
     --data_dir="../data/dgre/" \
     --log_dir="./logs/" \
     --output_dir="./checkpoints/" \
     --num_tags=5 \  # 根据rels.txt里面数目而定
     --seed=123 \
     --gpu_ids="0" \
     --max_seq_len=512 \
     --lr=3e-5 \
     --other_lr=3e-4 \
     --train_batch_size=8 \
     --train_epochs=1 \
     --eval_batch_size=8 \
     --dropout_prob=0.3testloss7.225020 accuracy0.9893 micro_f10.9893 macro_f10.8997
     预测标签: ['部件故障']
     真实标签部件故障

    注意:在测试时如果里面不含某类关系的数据,会报错:ValueError: Number of classes, 4, does not match size of target_names, 5. Try specifying the labels parameter,所以在该数据上要把测试报告那部分代码注释掉。

  • 实体和关系都训练完,我们会得到bert_bilstm_crf_ner/checkpoints/bert_crf/model.pt和bert_re/checkpoints/best.pt。在pytorch_triple_extraction/get_result.py里面进行融合预测,需要修改:

     model_name = 'bert_crf'  # 这些参数和之前的对应
     ner_args.use_lstm = 'False'
     ner_args.use_crf = 'True'
     ner_args.num_tags = 5
     ner_args.max_seq_len = 512
     
     re_args.num_tags = 5
     re_args.max_seq_len = 512
         
     并最后修改预测的文本raw_texts = [
         '故障现象:转向时有“咯噔”声原因分析:转向机与转向轴处缺油解决措施:向此处重新覆盖一层润滑脂后,故障消失',
         '1045号汽车故障报告故障现象打开点火开关,操作左前电动座椅开关,座椅6个方向均不动作故障原因六向电动座椅线束磨破搭铁修复方法包扎磨破线束,从新固定。',
     ]
         
     结果:
     ('转向', 5, 'subject')
     ('转向机', 19, 'subject')
     ('转向轴', 23, 'subject')
     ('缺油', 27, 'object')
     [('转向', 5, 7), ('转向机', 19, 22), ('转向轴', 23, 26)]
     [('缺油', 27, 29)]
     ==========================
     故障现象转向时有咯噔声原因分析转向机与转向轴处缺油解决措施向此处重新覆盖一层润滑脂后故障消失
     主体: ('转向', 5, 7)
     客体: ('缺油', 27, 29)
     关系部件故障
     ==========================
     故障现象转向时有咯噔声原因分析转向机与转向轴处缺油解决措施向此处重新覆盖一层润滑脂后故障消失
     主体: ('转向机', 19, 22)
     客体: ('缺油', 27, 29)
     关系部件故障
     ==========================
     故障现象转向时有咯噔声原因分析转向机与转向轴处缺油解决措施向此处重新覆盖一层润滑脂后故障消失
     主体: ('转向轴', 23, 26)
     客体: ('缺油', 27, 29)
     关系部件故障
     ('座椅', 33, 'subject')
     ('不动作', 40, 'object')
     ('六向电动座椅线束', 47, 'subject')
     ('磨破', 55, 'object')
     [('座椅', 33, 35), ('六向电动座椅线束', 47, 55)]
     [('不动作', 40, 43), ('磨破', 55, 57)]
     ==========================
     1045号汽车故障报告故障现象打开点火开关操作左前电动座椅开关座椅6个方向均不动作故障原因六向电动座椅线束磨破搭铁修复方法包扎磨破线束从新固定主体: ('座椅', 33, 35)
     客体: ('不动作', 40, 43)
     关系部件故障
     ==========================
     1045号汽车故障报告故障现象打开点火开关操作左前电动座椅开关座椅6个方向均不动作故障原因六向电动座椅线束磨破搭铁修复方法包扎磨破线束从新固定主体: ('座椅', 33, 35)
     客体: ('磨破', 55, 57)
     关系部件故障
     ==========================
     1045号汽车故障报告故障现象打开点火开关操作左前电动座椅开关座椅6个方向均不动作故障原因六向电动座椅线束磨破搭铁修复方法包扎磨破线束从新固定主体: ('六向电动座椅线束', 47, 55)
     客体: ('不动作', 40, 43)
     关系部件故障
     ==========================
     1045号汽车故障报告故障现象打开点火开关操作左前电动座椅开关座椅6个方向均不动作故障原因六向电动座椅线束磨破搭铁修复方法包扎磨破线束从新固定主体: ('六向电动座椅线束', 47, 55)
     客体: ('磨破', 55, 57)
     关系部件故障

后话:之前的duie关系抽取没有考虑到数据单独建一个文件夹,可酌情修改,主要是一些路径问题。而对于上述数据集而言,也可以增加一些约束,比如:客体要约束在主体之后,而不能在主体之前。延伸到方面级的情感分析也是一样的。

总结

如果你想完成上面的实验,以下是步骤:

下载chinese-bert-wwm-ext到pytorch_triple_extraction/model_hub下
==========================
cd pytorch_triple_extraction/data/dgre/raw_data
python process.py
==========================
cd pytorch_triple_extraction/bert_bilstm_crf_ner/
python preprocess.py
==========================
python main.py \
--bert_dir="../model_hub/chinese-bert-wwm-ext/" \
--data_dir="../data/dgre/" \
--log_dir="./logs/" \
--output_dir="./checkpoints/" \
--num_tags=5 \
--seed=123 \
--gpu_ids="0" \
--max_seq_len=512 \
--lr=3e-5 \
--crf_lr=3e-2 \
--other_lr=3e-4 \
--train_batch_size=8 \
--train_epochs=5 \
--eval_batch_size=8 \
--max_grad_norm=1 \
--warmup_proportion=0.1 \
--adam_epsilon=1e-8 \
--weight_decay=0.01 \
--lstm_hidden=128 \
--num_layers=1 \
--use_lstm="False" \
--use_crf="True" \
--dropout_prob=0.3 \
--dropout=0.3 
==========================
cd pytorch_triple_extraction
python re_process.py
==========================
cd pytorch_triple_extraction/bert_re
python main.py \
--bert_dir="../model_hub/chinese-bert-wwm-ext/" \
--data_dir="../data/dgre/" \
--log_dir="./logs/" \
--output_dir="./checkpoints/" \
--num_tags=5 \
--seed=123 \
--gpu_ids="0" \
--max_seq_len=512 \
--lr=3e-5 \
--other_lr=3e-4 \
--train_batch_size=8 \
--train_epochs=1 \
--eval_batch_size=8 \
--dropout_prob=0.3 
==========================
cd pytorch_triple_extraction/
python get_result.py

最初的介绍

基于pytorch的中文三元组提取(命名实体识别+关系抽取)
预训练模型为chinese-roberta-wwm-ext
训练好的命名实体识别模型:
链接:https://pan.baidu.com/s/1ZrC4eum6cR8_UZZI9vxzFg
提取码:68wg
训练好的关系抽取模型:
链接:https://pan.baidu.com/s/1HIf6ri0BLv3Aeu20o_lwGg
提取码:7cee
data下面的数据:
链接:https://pan.baidu.com/s/15v8SxWpzQ5HwjXETxWnnhg
提取码:g53x
由于关系抽取数据量有点大,只以batchsize=16运行了4000个step。
具体命名实体识别和关系抽取在相应的readme.md里面有细讲。

说明

命名实体识别基于bert_bilstm_crf,识别出句子中的主体(subject)和客体(object)。相关功能在bert_bilstm_crf_ner下。存储的模型在bert_bilstm_crf_ner/checkpoints/bert_bilsm_crf/model.pt
关系抽取基于bert,识别出主体和客体之间的关系。相关功能在bert_re下。存储的模型位于bert_re/checkpoints/best.pt
具体相关的数据位于/data/下面,可以去查看。

温馨提示

不要在pycharm里面直接运行,在命令行使用带参数运行,即main.py后面的一连串东东。

命名实体识别

在bert_bilstm_crf_ner文件夹下的main.py是主运行程序,进入到bert_bilstm_crf_ner文件夹下,可用以下命令运行训练测试和预测:

!python main.py \
--bert_dir="../model_hub/chinese-roberta-wwm-ext/" \
--data_dir="../data/" \
--log_dir="./logs/" \
--output_dir="./checkpoints/" \
--num_tags=5 \
--seed=123 \
--gpu_ids="0" \
--max_seq_len=300 \
--lr=3e-5 \
--crf_lr=3e-2 \
--other_lr=3e-4 \
--train_batch_size=32 \
--train_epochs=1 \
--eval_batch_size=32 \
--max_grad_norm=1 \
--warmup_proportion=0.1 \
--adam_epsilon=1e-8 \
--weight_decay=0.01 \
--lstm_hidden=128 \
--num_layers=1 \
--use_lstm='True' \
--use_crf='True' \
--dropout_prob=0.3 \
--dropout=0.3 \
2021-08-18 12:17:05,417 - INFO - main.py - test - 144 -               
               precision    recall  f1-score   support

      object       0.76      0.89      0.82     38656
     subject       0.76      0.85      0.80     25103

   micro avg       0.76      0.88      0.81     63759
   macro avg       0.76      0.87      0.81     63759
weighted avg       0.76      0.88      0.81     63759

关系抽取结果

温馨提示

  • 由于数据量太大,在关系抽取main.py里面限制了在4000步保存模型并停止,可以酌情修改。
  • 在main.py里面的训练、验证、测试和预测代码根据需要进行注释或打开。
  • pytorch_triple_extraction/data/mid_re_data/rels.txt里面最后有一个空的,因此num_tags=实际标签数+1,这里就不进行改动了,有需要的话可以删除掉最后的空标签,那么num_tags就是实际标签数。(不使用我已经训练好的模型)。
  • ids里面对应得索引已经+1了,因为前面有个CLS。

在bert_re文件夹下的main.py是主运行程序,进入到bert_re文件夹下,可用以下命令运行训练测试和预测:

!python main.py \
--bert_dir="../model_hub/chinese-roberta-wwm-ext/" \
--data_dir="../data/" \
--log_dir="./logs/" \
--output_dir="./checkpoints/" \
--num_tags=49 \
--seed=123 \
--gpu_ids="0" \
--max_seq_len=300 \
--lr=3e-5 \
--other_lr=3e-4 \
--train_batch_size=16 \
--train_epochs=1 \
--eval_batch_size=32 \
--dropout_prob=0.3 \
2021-08-22 05:22:50,141 - INFO - main.py - <module> - 247 -testloss631.809930 accuracy0.8841 micro_f10.8841 macro_f10.8720
2021-08-22 05:22:50,292 - INFO - main.py - <module> - 249 -               precision    recall  f1-score   support

          歌手       0.83      0.82      0.83      3961
         代言人       0.98      1.00      0.99       920
          作曲       0.55      0.71      0.62      1647
          父亲       0.92      0.64      0.76      3036
        占地面积       0.93      0.93      0.93        90
        注册资本       1.00      1.00      1.00       116
        所属专辑       0.96      0.96      0.96      1063
        所在城市       0.95      0.98      0.97       128
          首都       1.00      1.00      1.00        82
        毕业院校       1.00      0.99      1.00      1184
          饰演       0.94      0.95      0.95      1420
          祖籍       0.99      0.93      0.96       206
        上映时间       0.96      1.00      0.98       886
          主角       0.86      0.67      0.75       350
                  0.70      0.98      0.82       258
          简称       1.00      0.99      0.99       588
          校长       0.97      1.00      0.98       414
          丈夫       0.64      0.92      0.76      2866
          国籍       0.99      0.98      0.98      2030
          导演       0.88      0.95      0.91      2957
         主题曲       0.97      0.95      0.96       486
        专业代码       0.00      0.00      0.00         2
          妻子       0.81      0.91      0.86      2869
        官方语言       1.00      1.00      1.00        24
        成立日期       1.00      1.00      1.00      2082
          配音       0.99      0.95      0.97       586
        邮政编码       1.00      1.00      1.00         2
          海拔       1.00      1.00      1.00        54
          作词       0.82      0.52      0.63      1669
         创始人       0.84      0.86      0.85       308
         主持人       0.86      0.89      0.87       696
          母亲       0.98      0.52      0.68      1661
        人口数量       1.00      0.94      0.97        64
        修业年限       0.00      0.00      0.00         2
         制片人       0.79      0.70      0.74       248
          编剧       0.82      0.56      0.67       902
          气候       1.00      0.98      0.99       104
         改编自       0.95      0.98      0.96       108
          票房       1.00      1.00      1.00       296
          主演       0.96      0.96      0.96      7056
          面积       0.92      0.92      0.92        76
        出品公司       0.98      0.98      0.98      1056
          朝代       0.96      0.99      0.97      1026
         董事长       0.98      0.94      0.96      1220
          作者       0.93      0.96      0.94      4260
          嘉宾       0.77      0.87      0.82       922
          获奖       1.00      1.00      1.00       584
        总部地点       1.00      0.99      0.99       408

    accuracy                           0.88     52973
   macro avg       0.88      0.87      0.87     52973
weighted avg       0.89      0.88      0.88     52973

融合预测

在得到了各自的模型之后,在get_result.py中可以进行三元组抽取了:

python get_result.py
('明早起飞', 0, 'subject')
('明太鱼', 7, 'object')
('满江', 13, 'object')
('戴娆', 18, 'object')
[('明早起飞', 0, 4)]
[('明太鱼', 7, 10), ('满江', 13, 15), ('戴娆', 18, 20)]
==========================
明早起飞是由明太鱼作词满江作曲戴娆演唱的一首歌曲
主体: ('明早起飞', 0, 4)
客体: ('明太鱼', 7, 10)
关系作词
==========================
明早起飞是由明太鱼作词满江作曲戴娆演唱的一首歌曲
主体: ('明早起飞', 0, 4)
客体: ('满江', 13, 15)
关系作曲
==========================
明早起飞是由明太鱼作词满江作曲戴娆演唱的一首歌曲
主体: ('明早起飞', 0, 4)
客体: ('戴娆', 18, 20)
关系作曲

('古董相机收藏与鉴赏', 0, 'subject')
('高继生', 12, 'object')
('高峻岭', 16, 'object')
[('古董相机收藏与鉴赏', 0, 9)]
[('高继生', 12, 15), ('高峻岭', 16, 19)]
==========================
古董相机收藏与鉴赏是由高继生高峻岭编著浙江科学技术出版社出版的一本书籍
主体: ('古董相机收藏与鉴赏', 0, 9)
客体: ('高继生', 12, 15)
关系作者
==========================
古董相机收藏与鉴赏是由高继生高峻岭编著浙江科学技术出版社出版的一本书籍
主体: ('古董相机收藏与鉴赏', 0, 9)
客体: ('高峻岭', 16, 19)
关系作者

('谢顺光', 0, 'subject')
('江西都昌', 8, 'object')
[('谢顺光', 0, 3)]
[('江西都昌', 8, 12)]
==========================
谢顺光祖籍江西都昌出生于景德镇陶瓷世家
主体: ('谢顺光', 0, 3)
客体: ('江西都昌', 8, 12)
关系祖籍

存在的问题

有很多可以改进的地方:

  • 一个实体可能是主体,也可能是客体,这里没有考虑到。实际上可以先识别出各种类型的实体,而不是定义为主体和客体。(或许我们先找出所有的实体,然后根据实体间的关系,反过来推测实体的类型。)
  • 关系抽取,每次都需要将一对实体和文本输入到网络中进行预测,可以试下输入多个实体对一次性进行多分类,避免对一个句子进行重复编码。
  • 没有未知这一类,对于不在关系类别中的没有办法。(或许可以在预测的时候设置一个阈值,如果大于该阈值才认定为那一类,否则就是未知类)

参考

借鉴了该博客的思想:https://www.cnblogs.com/jclian91/p/12499062.html (基于keras)

补充

更为简单的三元组抽取,联合关系抽取,不用再先进行实体识别,再进行关系分类:

延申:


More Repositories

1

awesome-chinese-ner

中文命名实体识别。包含目前最新的中文命名实体识别论文、中文实体识别相关工具、数据集,以及中文预训练模型、词向量、实体识别综述等。
575
star
2

pytorch_bert_bilstm_crf_ner

基于pytorch的bert_bilstm_crf中文命名实体识别
Python
503
star
3

BERT-BILSTM-CRF

使用BERT-BILSTM-CRF进行中文命名实体识别。
Python
303
star
4

chinese_information_extraction

中文信息抽取,包含实体抽取、关系抽取、事件抽取
Python
220
star
5

langchain-learning

langchain学习笔记,包含langchain源码解读、langchain中使用中文模型、langchain实例等。
169
star
6

pytorch_bert_intent_classification_and_slot_filling

基于pytorch的中文意图识别和槽位填充
Python
129
star
7

BERT-Relation-Extraction

使用bert进行关系三元组抽取。
Python
125
star
8

PointerNet_Chinese_Information_Extraction

利用指针网络进行信息抽取,包含命名实体识别、关系抽取、事件抽取。
Python
115
star
9

OneRel_chinese

OneRel在中文关系抽取中的使用
Roff
111
star
10

Llama3.1-Finetuning

对llama3进行全参微调、lora微调以及qlora微调。
Python
108
star
11

sentencepiece_chinese_bpe

使用sentencepiece中BPE训练中文词表,并在transformers中进行使用。
Python
106
star
12

pytorch_HAN

异构图神经网络HAN。Heterogeneous Graph Attention Network (HAN) with pytorch
Python
99
star
13

qlora-chinese-LLM

使用qlora对中文大语言模型进行微调,包含ChatGLM、Chinese-LLaMA-Alpaca、BELLE
Python
86
star
14

pytorch_bert_multi_classification

基于pytorch_bert的中文多标签分类
Python
79
star
15

pytorch_bert_chinese_text_classification

基于pytorch+bert的中文文本分类
Python
75
star
16

DGL_Chinese_Manual

DGL中文文档。This is the Chinese manual of the graph neural network library DGL, currently contains the User Guide.
71
star
17

pytorch_GlobalPointer_triple_extraction

基于pytorch的GlobalPointer进行三元组抽取。
Python
67
star
18

pytorch_bert_event_extraction

基于pytorch+bert的中文事件抽取
Python
63
star
19

pytorch-distributed-NLP

pytorch分布式训练
Python
57
star
20

prompt_text_classification

基于prompt的中文文本分类。
Python
53
star
21

pytorch_uie_ner

基于pytorch的百度UIE命名实体识别。
Python
52
star
22

awesome-relation-extraction

关系抽取
51
star
23

W2NER_predict

[Unofficial] Predict code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification
Python
49
star
24

ChatGLM-LoRA-Tuning

使用LoRA对ChatGLM进行微调。
Python
46
star
25

awesome-chinese-text-correction

中文文本纠错相关的论文、比赛和工具。
46
star
26

ChatABSA

基于ChatGPT的情感分析
Python
46
star
27

python_common_code_collection

收集经常用到的一些python代码
Python
44
star
28

sbert_text_similarity

使用sentence-transformers(SBert)训练自己的文本相似度数据集并进行评估。
Python
43
star
29

BERT_MRC_NER_chinese

基于bert_mrc的中文命名实体识别
Python
43
star
30

pytorch_GlobalPointer_Ner

基于pytorch的GlobalPointer进行中文命名实体识别。
Python
37
star
31

BERT-Event-Extraction

使用bert进行事件抽取。
Python
34
star
32

pytorch_casrel_triple_extraction

基于pytorch的CasRel进行三元组抽取。
Python
34
star
33

Chinese-LLaMA-Alpaca-LoRA-Tuning

使用LoRA对Chinese-LLaMA-Alpaca进行微调。
Python
33
star
34

pytorch_bert_chinese_spell_correction

基于pytorch的中文拼写纠错,使用的模型是Bert以及SoftMaskedBert
Python
30
star
35

pytorch_bert_relation_extraction

基于pytorch+bert的中文关系抽取
Python
29
star
36

SpERT_chinese

基于论文SpERT: "Span-based Entity and Relation Transformer"的中文关系抽取,同时抽取实体、实体类别和关系类别。
Python
29
star
37

pytorch_bert_entity_linking

基于bert的中文实体链接
Python
27
star
38

Gector_chinese

基于seq2edit (Gector) 的中文文本纠错。
Python
26
star
39

taishan1994

22
star
40

address_normalize

根据地址提取省、市、区/县、街道,并进行标准化
Python
20
star
41

tensorflow-text-classification

基于tensorflow的中文文本分类(复旦中文语料)
Python
20
star
42

pytorch_uie_re

基于百度uie的关系抽取
Python
20
star
43

BERT-ABSA

使用bert进行中文方面级情感识别。
Python
19
star
44

baichuan-Qlora-Tuning

基于qlora对baichuan-7B大模型进行指令微调。
Python
18
star
45

pytorch_Cascade_Bert_Ner

基于pytorch的级联Bert用于中文命名实体识别。
Python
18
star
46

stroke2vec

获取中文的笔画向量
Python
17
star
47

doccano_export

使用doccano标注工具同时导出实体和关系数据为空的解决办法。
Python
17
star
48

pytorch_TPLinker_Plus_Ner

基于pytorch的TPLinker_plus进行中文命名实体识别
Python
17
star
49

chinese_sentence_embeddings

bert_avg,bert_whitening,sbert,consert,simcse,esimcse 中文句向量表示
Python
16
star
50

pytorch_knowledge_distillation

基于Pytorch的知识蒸馏(中文文本分类)
Python
15
star
51

pytorch_bert_coreference_resolution

基于pytorch+bert的指代消解
Python
15
star
52

simcse_chinese_sentence_vector

基于simcse的中文句向量生成
Python
14
star
53

pytorch_bilstm_crf_chinese_ner

基于pytorch+bilstm_crf的中文命名实体识别
Python
13
star
54

chinese_keyword_extraction

中文关键词提取
Python
12
star
55

dpcq_new_word_find

斗破苍穹小说的新词发现
Python
12
star
56

tensorflow-bilstm-crf

基于tensorflow的bilstm+crf的命名实体识别
12
star
57

python3_wiki_word2vec

基于python3训练中文wiki词向量、字向量、拼音向量
Python
11
star
58

chinese_llm_pretrained

使用自己的tokenizer继续预训练大语言模型。
Python
9
star
59

genius_for_your_data

使用GENIUS文本生成模型训练自己的数据集。
Python
9
star
60

train_bert_use_your_data

基于pytorch使用自己的数据继续训练bert
Python
9
star
61

pytorch_Multi_Head_Selection_Ner

基于pytorch的多头选择方法进行中文命名实体识别。
Python
9
star
62

pytorch_chinese_biaffine_ner

使用biaffine的中文命名实体识别
Python
9
star
63

pytorch_unbalanced_text_classification

基于pytorch的不平衡数据的文本分类
Python
9
star
64

pytorch_lightning_text_classification

基于pytorch_lightning的中文文本分类样例
Python
8
star
65

medical_question_and_answer_knowledge_graph

Python
8
star
66

fasttext_chinese_ABSA

基于fasttext的中文细粒度情感分类
Python
8
star
67

PPO_Chinese_Generate

Python
8
star
68

pytorch_simple_bert

更直接的bert代码,可以加载hugging face上的预训练权重,目前支持中文文本分类以及MLM语言模型训练任务。
Python
8
star
69

classical_chinese_extraction

文言文信息抽取(实体识别+关系抽取)
Python
7
star
70

lol_knowledge_graph_qa

基于英雄联盟知识图谱的问答
Python
7
star
71

pytorch_gat

Pytorch implementation of graph attention network
Python
7
star
72

chinese_llm_sft

使用指令微调对大模型进行微调。
Python
7
star
73

bert-sklearn-chinese

像使用sklearn那样来使用bert进行中文文本分类、命名实体识别、句子相似度判别
Python
6
star
74

pytorch_cnn_rnn_transformer

pytorch版本的三大特征提取器
Python
6
star
75

pytorch_ner_v1

中文命名实体识别的三种架构实现
Python
6
star
76

UIE_CLUENER

用百度的UIE解决CLUENER2020细粒度实体识别数据集。
Python
6
star
77

pytorch_Chinese_Generate

基于pytorch的中文文本生成。
Python
6
star
78

ltp_triple_extraction

Python
6
star
79

pytorch_bert_english_ner

基于bert的英文实体识别
Python
5
star
80

transformer-examples

从头开始使用transfomer构建seq2seq(对对联)、自编码(新闻文本分类)、自回归(斗破苍穹小说续写)任务。
Python
5
star
81

pytorch_chinese_QANet_cmrc2018

基于QANet的中文阅读理解。
Python
5
star
82

hugging-face-course

hugging face的官方教程中文翻译
5
star
83

Qwen2-UIE

基于Qwen2模型进行通用信息抽取【实体/关系/事件抽取】
Python
5
star
84

eda_for_chinese_text_classification

基于EDA进行中文文本分类
Python
5
star
85

pytorch_chinese_text_classification

基于pytorch的中文文本分类,包含fasttext、textcnn、textrnn、textrnn_att、textrnn_bc、transformer、dpcnn
Python
5
star
86

pytorch_bert_chinese_ner

基于bert的中文实体识别,并使用字形嵌入和拼音嵌入。
Python
4
star
87

pytorch_chinese_albert_attribute_extraction

基于pytorch_albert的属性抽取
Python
4
star
88

xiximayou-arxiv

用于定制化arxiv文章。
CSS
3
star
89

pytorch_peot_rnn

基于pytorch_rnn的古诗词生成
Python
3
star
90

ChatCTG

基于ChatGPT的可控文本生成。这里主要是使用ChatGPT实现一些文本生成相关的项目。
Python
3
star
91

seq2seq_english_to_chinese

基于pytorch的英文翻译成中文
Python
3
star
92

chinese_chengyujielong

本仓库包含4万多条成语,并提供成语接龙实例。
Python
3
star
93

Chinese-BELLE-LoRA-Tuning

使用LoRA对BELLE发布的BELLE-7B-2M进行微调。
Python
3
star
94

phishing_url_recognition

恶意域名识别
Python
3
star
95

pytorch_chinese_multiple_choice

基于pytorch+lstm的中文多项选择。
Python
2
star
96

WebQA_tfidf

针对于百度WebQA数据集,利用TF-IDF等模型构建的问答系统
Python
2
star
97

pytorch_albert_qa

基于albert的中文问答
Python
2
star
98

pytorch_OneVersusRest_Ner

基于pytorch的one vs rest中文命名实体识别。
Python
1
star
99

learn_django

django的一些学习笔记
HTML
1
star
100

DPO-Finetuning

专门用于训练DPO模型的仓库。
Python
1
star