• Stars
    star
    189
  • Rank 204,649 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created about 3 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

GEARS is a geometric deep learning model that predicts outcomes of novel multi-gene perturbations

GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations

This repository hosts the official implementation of GEARS, a method that can predict transcriptional response to both single and multi-gene perturbations using single-cell RNA-sequencing data from perturbational screens.

gears

Installation

Install PyG, and then do pip install cell-gears.

[New] Updates in v0.1.1

  • Fixed training breakpoint bug from v0.1.0
  • Preprocessed dataloader now available for Replogle 2022 RPE1 and K562 essential datasets
  • Added custom split, fixed no-test split

Core API Interface

Using the API, you can (1) reproduce the results in our paper and (2) train GEARS on your perturbation dataset using a few lines of code.

from gears import PertData, GEARS

# get data
pert_data = PertData('./data')
# load dataset in paper: norman, adamson, dixit.
pert_data.load(data_name = 'norman')
# specify data split
pert_data.prepare_split(split = 'simulation', seed = 1)
# get dataloader with batch size
pert_data.get_dataloader(batch_size = 32, test_batch_size = 128)

# set up and train a model
gears_model = GEARS(pert_data, device = 'cuda:8')
gears_model.model_initialize(hidden_size = 64)
gears_model.train(epochs = 20)

# save/load model
gears_model.save_model('gears')
gears_model.load_pretrained('gears')

# predict
gears_model.predict([['CBL', 'CNN1'], ['FEV']])
gears_model.GI_predict(['CBL', 'CNN1'], GI_genes_file=None)

To use your own dataset, create a scanpy adata object with a gene_name column in adata.var, and two columns condition, cell_type in adata.obs. Then run:

pert_data.new_data_process(dataset_name = 'XXX', adata = adata)
# to load the processed data
pert_data.load(data_path = './data/XXX')

Demos

Name Description
Dataset Tutorial Tutorial on how to use the dataset loader and read customized data
Model Tutorial Tutorial on how to train GEARS
Plot top 20 DE genes Tutorial on how to plot the top 20 DE genes
Uncertainty Tutorial on how to train an uncertainty-aware GEARS model

Colab

Name Description
Using Trained Model Use a model trained on Norman et al. 2019 to make predictions (Needs Colab Pro)

Cite Us

@article{roohani2023predicting,
  title={Predicting transcriptional outcomes of novel multigene perturbations with gears},
  author={Roohani, Yusuf and Huang, Kexin and Leskovec, Jure},
  journal={Nature Biotechnology},
  year={2023},
  publisher={Nature Publishing Group US New York}
}

Paper: Link

Code for reproducing figures: Link

More Repositories

1

snap

Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library.
C++
2,167
star
2

ogb

Benchmark datasets, data loaders, and evaluators for graph machine learning
Python
1,906
star
3

GraphGym

Platform for designing and evaluating Graph Neural Networks (GNN)
Python
1,669
star
4

pretrain-gnns

Strategies for Pre-training Graph Neural Networks
Python
955
star
5

deepsnap

Python library assists deep learning on graphs
Python
546
star
6

GraphRNN

Python
408
star
7

med-flamingo

Python
375
star
8

neural-subgraph-learning-GNN

Jupyter Notebook
327
star
9

stark

STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases (NeurIPS D&B 2024)
Python
297
star
10

snap-python

SNAP Python code, SWIG related files
C++
294
star
11

cs224w-notes

CS224W Course Notes
CSS
292
star
12

KGReasoning

Multi-Hop Logical Reasoning in Knowledge Graphs
Python
274
star
13

GreaseLM

[ICLR 2022 spotlight]GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Python
229
star
14

MLAgentBench

Python
224
star
15

relbench

RelBench: Relational Deep Learning Benchmark
Python
193
star
16

distance-encoding

Distance Encoding for GNN Design
Jupyter Notebook
181
star
17

graphwave

Jupyter Notebook
169
star
18

UCE

UCE is a zero-shot foundation model for single-cell gene expression data
Python
158
star
19

covid-mobility

Jupyter Notebook
148
star
20

roland

Jupyter Notebook
125
star
21

GIB

Graph Information Bottleneck (GIB) for learning minimal sufficient structural and feature information using GNNs
Jupyter Notebook
123
star
22

mars

Discovering novel cell types across heterogenous single-cell experiments
Jupyter Notebook
119
star
23

comet

[ICLR 2021] Concept Learners for Few-Shot Learning
Python
111
star
24

SATURN

Jupyter Notebook
103
star
25

orca

[ICLR 2022] Open-World Semi-Supervised Learning
Python
85
star
26

prodigy

Python
75
star
27

CAW

Python
72
star
28

snapvx

Python
65
star
29

conformalized-gnn

Uncertainty Quantification over Graph with Conformalized Graph Neural Networks (NeurIPS 2023)
Python
64
star
30

multiscale-interactome

Python
62
star
31

plato

Python
61
star
32

miner-data

Python
60
star
33

stellar

Jupyter Notebook
58
star
34

mambo

Jupyter Notebook
37
star
35

lamp

[ICLR23] First deep learning-based surrogate model that jointly learns the evolution model and optimizes computational cost via remeshing
Python
36
star
36

crust

[NeurIPS 2020] Coresets for Robust Training of Neural Networks against Noisy Labels
Python
33
star
37

bc-emb

Python
32
star
38

csr

Python
30
star
39

zeroc

ZeroC is a neuro-symbolic method that trained with elementary visual concepts and relations, can zero-shot recognize and acquire more complex, hierarchical concepts, even across domains
Jupyter Notebook
28
star
40

masa

Motif-Aware State Assignment in Noisy Time Series Data
Python
24
star
41

le_pde

LE-PDE accelerates PDEs' forward simulation and inverse optimization via latent global evolution, achieving significant speedup with SOTA accuracy
Jupyter Notebook
21
star
42

ConE

Python
20
star
43

BioDiscoveryAgent

BioDiscoveryAgent is an LLM-based AI agent for closed-loop design of genetic perturbation experiments
Python
19
star
44

F-FADE

Python
17
star
45

MetroMaps

MetroMaps Release
Python
16
star
46

MAG

Programs for Microsoft Academic Graph
Python
16
star
47

snap-dev

SNAP repository for Ringo
C++
14
star
48

exposure-segregation

Python
13
star
49

ringo

Next generation graph processing platform
Python
12
star
50

planet

PlaNet: Predicting population response to drugs via clinical knowledge graph
Python
12
star
51

covid-mobility-tool

Jupyter Notebook
10
star
52

llm-social-network

Jupyter Notebook
10
star
53

reddit-processing

preprocessing of Reddit data
Python
7
star
54

ViRel

ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy
Python
7
star
55

news-search

search Internet news archive
Java
7
star
56

snap-python-64

C++
6
star
57

snap-dev-64

64-bit SNAP (in development, not intended for general use)
C++
6
star
58

snapworld

Python
6
star
59

lego

5
star
60

yperf

Simple performance monitor for Linux
Python
4
star
61

pebble-fit

become less sedentary with pebble
C
4
star
62

dec2vec

Python
3
star
63

caml

Python
3
star
64

SnapTimeTF

Python
2
star
65

covid-spillovers

Jupyter Notebook
2
star
66

curis-2012

Summer 2012 Curis Project
JavaScript
2
star
67

snaptime

Python
2
star
68

GNN-reading-group

1
star
69

supply-chains

Jupyter Notebook
1
star
70

relbench-user-study

Python
1
star
71

AutoTransfer

Python
1
star
72

hash

C++
1
star