• Stars
    star
    494
  • Rank 89,130 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 1 year ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Masked Diffusion Transformer is the SOTA for image synthesis. (ICCV 2023)

Masked Diffusion Transformer

PWC HuggingFace space

The official codebase for Masked Diffusion Transformer is a Strong Image Synthesizer.

Introduction

Despite its success in image synthesis, we observe that diffusion probabilistic models (DPMs) often lack contextual reasoning ability to learn the relations among object parts in an image, leading to a slow learning process.

To solve this issue, we propose a Masked Diffusion Transformer (MDT) that introduces a mask latent modeling scheme to explicitly enhance the DPMs’ ability of contextual relation learning among object semantic parts in an image. During training, MDT operates on the latent space to mask certain tokens. Then, an asymmetric masking diffusion transformer is designed to predict masked tokens from unmasked ones while maintaining the diffusion generation process. Our MDT can reconstruct the full information of an image from its incomplete contextual input, thus enabling it to learn the associated relations among image tokens.

Experimental results show that MDT achieves superior image synthesis performance, e.g. a new SoTA FID score on the ImageNet dataset, and has about 3× faster learning speed than the previous SoTA DiT.

image

Performance

Model Dataset Resolution FID-50K Inception Score
MDT-XL/2 ImageNet 256x256 1.79 283.01

Pretrained model download

Model is hosted on hugglingface, you can also download it with:

from huggingface_hub import snapshot_download
models_path = snapshot_download("shgao/MDT-XL2")
ckpt_model_path = os.path.join(models_path, "mdt_xl2_v1_ckpt.pt")

A hugglingface demo is on DEMO.

NEW SOTA on FID.

Setup

Prepare the Pytorch 1.13 version. Download and install this repo.

git clone https://github.com/sail-sg/MDT
cd MDT
pip install -e .

DATA

  • For standard datasets like ImageNet and CIFAR, please refer to 'dataset' for preparation.
  • When using customized dataset, change the image file name to ClassID_ImgID.jpg, as the ADM's dataloder gets the class ID from the file name.

Training

Training on one node (`run.sh`).
export OPENAI_LOGDIR=output_mdt_s2
NUM_GPUS=8

MODEL_FLAGS="--image_size 256 --mask_ratio 0.30 --decode_layer 2 --model MDT_S_2"
DIFFUSION_FLAGS="--diffusion_steps 1000"
TRAIN_FLAGS="--batch_size 32"
DATA_PATH=/dataset/imagenet

python -m torch.distributed.launch --nproc_per_node=$NUM_GPUS scripts/image_train.py --data_dir $DATA_PATH $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
Training on multiple nodes (`run_ddp_master.sh` and `run_ddp_worker.sh`).
# On master:
export OPENAI_LOGDIR=output_mdt_xl2
MODEL_FLAGS="--image_size 256 --mask_ratio 0.30 --decode_layer 2 --model MDT_XL_2"
DIFFUSION_FLAGS="--diffusion_steps 1000"
TRAIN_FLAGS="--batch_size 4"
DATA_PATH=/dataset/imagenet
NUM_NODE=8
GPU_PRE_NODE=8

python -m torch.distributed.launch --master_addr=$(hostname) --nnodes=$NUM_NODE --node_rank=$RANK --nproc_per_node=$GPU_PRE_NODE --master_port=$MASTER_PORT scripts/image_train.py --data_dir $DATA_PATH $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

# On workers:
export OPENAI_LOGDIR=output_mdt_xl2
MODEL_FLAGS="--image_size 256 --mask_ratio 0.30 --decode_layer 2 --model MDT_XL_2"
DIFFUSION_FLAGS="--diffusion_steps 1000"
TRAIN_FLAGS="--batch_size 4"
DATA_PATH=/dataset/imagenet
NUM_NODE=8
GPU_PRE_NODE=8

python -m torch.distributed.launch --master_addr=$MASTER_ADDR --nnodes=$NUM_NODE --node_rank=$RANK --nproc_per_node=$GPU_PRE_NODE --master_port=$MASTER_PORT scripts/image_train.py --data_dir $DATA_PATH $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

Evaluation

The evaluation code is obtained from ADM's TensorFlow evaluation suite. Please follow the instructions in the evaluations folder to set up the evaluation environment.

Sampling and Evaluation (`run_sample.sh`):
MODEL_PATH=output_mdt_xl2/mdt_xl2_v1_ckpt.pt
export OPENAI_LOGDIR=output_mdt_xl2_eval
NUM_GPUS=8

echo 'CFG Class-conditional sampling:'
MODEL_FLAGS="--image_size 256 --model MDT_XL_2 --decode_layer 2"
DIFFUSION_FLAGS="--num_sampling_steps 250 --num_samples 50000  --cfg_cond True"
echo $MODEL_FLAGS
echo $DIFFUSION_FLAGS
echo $MODEL_PATH
python -m torch.distributed.launch --nproc_per_node=$NUM_GPUS scripts/image_sample.py --model_path $MODEL_PATH $MODEL_FLAGS $DIFFUSION_FLAGS
echo $MODEL_FLAGS
echo $DIFFUSION_FLAGS
echo $MODEL_PATH
python evaluations/evaluator.py ../dataeval/VIRTUAL_imagenet256_labeled.npz $OPENAI_LOGDIR/samples_50000x256x256x3.npz

echo 'Class-conditional sampling:'
MODEL_FLAGS="--image_size 256 --model MDT_XL_2 --decode_layer 2"
DIFFUSION_FLAGS="--num_sampling_steps 250 --num_samples 50000"
echo $MODEL_FLAGS
echo $DIFFUSION_FLAGS
echo $MODEL_PATH
python -m torch.distributed.launch --nproc_per_node=$NUM_GPUS scripts/image_sample.py --model_path $MODEL_PATH $MODEL_FLAGS $DIFFUSION_FLAGS
echo $MODEL_FLAGS
echo $DIFFUSION_FLAGS
echo $MODEL_PATH
python evaluations/evaluator.py ../dataeval/VIRTUAL_imagenet256_labeled.npz $OPENAI_LOGDIR/samples_50000x256x256x3.npz

Visualization

Run the infer_mdt.py to generate images.

Citation

@misc{gao2023masked,
      title={Masked Diffusion Transformer is a Strong Image Synthesizer}, 
      author={Shanghua Gao and Pan Zhou and Ming-Ming Cheng and Shuicheng Yan},
      year={2023},
      eprint={2303.14389},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

This codebase is built based on the DiT and ADM. Thanks!

More Repositories

1

EditAnything

Edit anything in images powered by segment-anything, ControlNet, StableDiffusion, etc. (ACM MM)
Python
3,256
star
2

poolformer

PoolFormer: MetaFormer Is Actually What You Need for Vision (CVPR 2022 Oral)
Python
1,290
star
3

envpool

C++-based high-performance parallel environment execution engine (vectorized env) for general RL environments.
C++
1,084
star
4

volo

VOLO: Vision Outlooker for Visual Recognition
Jupyter Notebook
922
star
5

Adan

Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
Python
743
star
6

metaformer

MetaFormer Baselines for Vision (TPAMI 2024)
Python
414
star
7

lorahub

The official repository of paper "LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition".
Python
380
star
8

mvp

NeurIPS-2021: Direct Multi-view Multi-person 3D Human Pose Estimation
Python
324
star
9

CLoT

CVPR'24, Official Codebase of our Paper: "Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation".
Python
290
star
10

inceptionnext

InceptionNeXt: When Inception Meets ConvNeXt (CVPR 2024)
Python
245
star
11

iFormer

iFormer: Inception Transformer
Python
226
star
12

ptp

[CVPR2023] The code for 《Position-guided Text Prompt for Vision-Language Pre-training》
Python
148
star
13

BindDiffusion

BindDiffusion: One Diffusion Model to Bind Them All
Python
140
star
14

sailor-llm

⚓️ Sailor: Open Language Models for South-East Asia
Python
87
star
15

FDM

The official PyTorch implementation of Fast Diffusion Model
Python
83
star
16

mugs

A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".
Python
78
star
17

Agent-Smith

[ICML2024] Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast
Python
69
star
18

sdft

[ACL 2024] The official codebase for the paper "Self-Distillation Bridges Distribution Gap in Language Model Fine-tuning".
Shell
67
star
19

symbolic-instruction-tuning

The official repository for the paper "From Zero to Hero: Examining the Power of Symbolic Tasks in Instruction Tuning".
Python
58
star
20

scaling-with-vocab

📈 Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies https://arxiv.org/abs/2407.13623
Python
52
star
21

ScaleLong

The official repository of paper "ScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection" (NeurIPS 2023)
Python
47
star
22

VGT

Video Graph Transformer for Video Question Answering (ECCV'22)
Python
44
star
23

jax_xc

Exchange correlation functionals translated from libxc to jax
Python
43
star
24

d4ft

A JAX library for Density Functional Theory.
Python
40
star
25

finetune-fair-diffusion

Code of the paper: Finetuning Text-to-Image Diffusion Models for Fairness
Python
38
star
26

dice

Official implementation of Bootstrapping Language Models via DPO Implicit Rewards
Python
36
star
27

ILD

Imitation Learning via Differentiable Physics
Python
33
star
28

GP-Nerf

Official implementation for GP-NeRF (ECCV 2022)
Python
33
star
29

Consistent3D

The official PyTorch implementation of Consistent3D (CVPR 2024)
Python
33
star
30

edp

[NeurIPS 2023] Efficient Diffusion Policy
Python
32
star
31

rosmo

Codes for "Efficient Offline Policy Optimization with a Learned Model", ICLR2023
Python
28
star
32

MMCBench

Python
27
star
33

GDPO

Graph Diffusion Policy Optimization
Python
24
star
34

dualformer

Python
23
star
35

hloenv

an environment based on XLA for deep learning compiler optimization research.
C++
23
star
36

DiffMemorize

On Memorization in Diffusion Models
Python
21
star
37

optim4rl

Optim4RL is a Jax framework of learning to optimize for reinforcement learning.
Python
21
star
38

TEC

Python
15
star
39

numcc

NU-MCC: Multiview Compressive Coding with Neighborhood Decoder and Repulsive UDF
Python
12
star
40

PatchAIL

Implementation of PatchAIL in the ICLR 2023 paper <Visual Imitation with Patch Rewards>
Python
12
star
41

offbench

Python
11
star
42

OPER

code for the paper Offline Prioritized Experience Replay
Jupyter Notebook
11
star
43

win

Python
4
star
44

P-DoS

[ArXiv 2024] Denial-of-Service Poisoning Attacks on Large Language Models
Python
4
star
45

sailcompass

Python
3
star
46

SLRLA-optimizer

Python
2
star
47

Cheating-LLM-Benchmarks

Jupyter Notebook
2
star
48

I-FSJ

Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses
Python
2
star
49

MISA

[NeurIPS 2023] Mutual Information Regularized Offline Reinforcement Learning
Python
1
star