• Stars
    star
    324
  • Rank 129,708 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 3 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

NeurIPS-2021: Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation

[paper] [video-YouTube, video-Bilibili] [slides]

This is the official implementation of our NeurIPS-2021 work: Multi-view Pose Transformer (MvP). MvP is a simple algorithm that directly regresses multi-person 3D human pose from multi-view images.

[News] A Re-implementation is integrated into xrmocap: at https://github.com/openxrlab/xrmocap

Framework

mvp_framework

Example Result

mvp_framework

Reference

@article{wang2021mvp,
  title={Direct Multi-view Multi-person 3D Human Pose Estimation},
  author={Tao Wang and Jianfeng Zhang and Yujun Cai and Shuicheng Yan and Jiashi Feng},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

1. Installation

  1. Set the project root directory as ${POSE_ROOT}.
  2. Install all the required python packages (with requirements.txt).
  3. compile deformable operation for projective attention.
cd ./models/ops
sh ./make.sh

2. Data and Pre-trained Model Preparation

2.1 CMU Panoptic

Please follow VoxelPose to download the CMU Panoptic Dataset and PoseResNet-50 pre-trained model.

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|-- data
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...

2.2 Shelf/Campus

Please follow VoxelPose to download the Shelf/Campus Dataset.

Due to the limited and incomplete annotations of the two datasets, we use psudo ground truth 3D pose generated from VoxelPose to train the model, we expect mvp would perform much better with absolute ground truth pose data.

Please use voxelpose or other methods to generate psudo ground truth for the training set, you can also use our generated psudo GT: psudo_gt_shelf. psudo_gt_campus. psudo_gt_campus_fix_gtmorethanpred.

Due to the small dataset size, we fine-tune Panoptic pre-trained model to Shelf and Campus. Download the pretrained MvP on Panoptic from model_best_5view and model_best_3view_horizontal_view or model_best_3view_2horizon_1lookdown

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle

2.3 Human3.6M dataset

Please follow CHUNYUWANG/H36M-Toolbox to prepare the data.

2.4 Full Directory Tree

The data and pre-trained model directory tree should look like this, you can only download the Panoptic dataset and PoseResNet-50 for reproducing the main MvP result and ablation studies:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- pesudo_gt
|   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- HM36

3. Training and Evaluation

The evaluation result will be printed after every epoch, the best result can be found in the log.

3.1 CMU Panoptic dataset

We train and validate on the five selected camera views. We trained our models on 8 GPUs and batch_size=1 for each GPU, note the total iteration per epoch should be 3205, if not, please check your data.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/best_model_config.yaml

Pre-trained models

Datasets AP25 AP25 AP25 AP25 MPJPE pth
Panoptic 92.3 96.6 97.5 97.7 15.8 here

3.1.1 Ablation Experiments

You can find several ablation experiment configs under ./configs/panoptic/, for example, removing RayConv:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/ablation_remove_rayconv.yaml

3.2 Shelf/Campus datasets

As shelf/campus are very small dataset with incomplete annotation, we finetune pretrained MvP with pseudo ground truth 3D pose extracted with VoxelPose, we expect more accurate GT would help MvP achieve much higher performance.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/shelf/mvp_shelf.yaml

Pre-trained models

Datasets Actor 1 Actor 2 Actor 2 Average pth
Shelf 99.3 95.1 97.8 97.4 here
Campus 98.2 94.1 97.4 96.6 here

3.3 Human3.6M dataset

MvP also applies to the naive single-person setting, with dataset like Human3.6, to come

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/h36m/mvp_h36m.yaml

4. Evaluation Only

To evaluate a trained model, pass the config and model pth:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/validate_3d.py --cfg xxx --model_path xxx

LICENSE

This repo is under the Apache-2.0 license. For commercial use, please contact the authors.

More Repositories

1

EditAnything

Edit anything in images powered by segment-anything, ControlNet, StableDiffusion, etc. (ACM MM)
Python
3,256
star
2

poolformer

PoolFormer: MetaFormer Is Actually What You Need for Vision (CVPR 2022 Oral)
Python
1,290
star
3

envpool

C++-based high-performance parallel environment execution engine (vectorized env) for general RL environments.
C++
1,084
star
4

volo

VOLO: Vision Outlooker for Visual Recognition
Jupyter Notebook
922
star
5

Adan

Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
Python
743
star
6

MDT

Masked Diffusion Transformer is the SOTA for image synthesis. (ICCV 2023)
Python
494
star
7

metaformer

MetaFormer Baselines for Vision (TPAMI 2024)
Python
414
star
8

lorahub

The official repository of paper "LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition".
Python
380
star
9

CLoT

CVPR'24, Official Codebase of our Paper: "Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation".
Python
290
star
10

inceptionnext

InceptionNeXt: When Inception Meets ConvNeXt (CVPR 2024)
Python
245
star
11

iFormer

iFormer: Inception Transformer
Python
226
star
12

ptp

[CVPR2023] The code for 《Position-guided Text Prompt for Vision-Language Pre-training》
Python
148
star
13

BindDiffusion

BindDiffusion: One Diffusion Model to Bind Them All
Python
140
star
14

sailor-llm

⚓️ Sailor: Open Language Models for South-East Asia
Python
87
star
15

FDM

The official PyTorch implementation of Fast Diffusion Model
Python
83
star
16

mugs

A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".
Python
78
star
17

Agent-Smith

[ICML2024] Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast
Python
69
star
18

sdft

[ACL 2024] The official codebase for the paper "Self-Distillation Bridges Distribution Gap in Language Model Fine-tuning".
Shell
67
star
19

symbolic-instruction-tuning

The official repository for the paper "From Zero to Hero: Examining the Power of Symbolic Tasks in Instruction Tuning".
Python
58
star
20

scaling-with-vocab

📈 Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies https://arxiv.org/abs/2407.13623
Python
52
star
21

ScaleLong

The official repository of paper "ScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection" (NeurIPS 2023)
Python
47
star
22

VGT

Video Graph Transformer for Video Question Answering (ECCV'22)
Python
44
star
23

jax_xc

Exchange correlation functionals translated from libxc to jax
Python
43
star
24

d4ft

A JAX library for Density Functional Theory.
Python
40
star
25

finetune-fair-diffusion

Code of the paper: Finetuning Text-to-Image Diffusion Models for Fairness
Python
38
star
26

dice

Official implementation of Bootstrapping Language Models via DPO Implicit Rewards
Python
36
star
27

ILD

Imitation Learning via Differentiable Physics
Python
33
star
28

GP-Nerf

Official implementation for GP-NeRF (ECCV 2022)
Python
33
star
29

Consistent3D

The official PyTorch implementation of Consistent3D (CVPR 2024)
Python
33
star
30

edp

[NeurIPS 2023] Efficient Diffusion Policy
Python
32
star
31

rosmo

Codes for "Efficient Offline Policy Optimization with a Learned Model", ICLR2023
Python
28
star
32

MMCBench

Python
27
star
33

GDPO

Graph Diffusion Policy Optimization
Python
24
star
34

dualformer

Python
23
star
35

hloenv

an environment based on XLA for deep learning compiler optimization research.
C++
23
star
36

DiffMemorize

On Memorization in Diffusion Models
Python
21
star
37

optim4rl

Optim4RL is a Jax framework of learning to optimize for reinforcement learning.
Python
21
star
38

TEC

Python
15
star
39

numcc

NU-MCC: Multiview Compressive Coding with Neighborhood Decoder and Repulsive UDF
Python
12
star
40

PatchAIL

Implementation of PatchAIL in the ICLR 2023 paper <Visual Imitation with Patch Rewards>
Python
12
star
41

offbench

Python
11
star
42

OPER

code for the paper Offline Prioritized Experience Replay
Jupyter Notebook
11
star
43

win

Python
4
star
44

P-DoS

[ArXiv 2024] Denial-of-Service Poisoning Attacks on Large Language Models
Python
4
star
45

sailcompass

Python
3
star
46

SLRLA-optimizer

Python
2
star
47

Cheating-LLM-Benchmarks

Jupyter Notebook
2
star
48

I-FSJ

Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses
Python
2
star
49

MISA

[NeurIPS 2023] Mutual Information Regularized Offline Reinforcement Learning
Python
1
star