• Stars
    star
    815
  • Rank 55,957 (Top 2 %)
  • Language
    C++
  • License
    MIT License
  • Created almost 7 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch Extension Library of Optimized Graph Cluster Algorithms

PyTorch Cluster

PyPI Version Testing Status Linting Status Code Coverage


This package consists of a small extension library of highly optimized graph cluster algorithms for the use in PyTorch. The package consists of the following clustering algorithms:

All included operations work on varying data types and are implemented both for CPU and GPU.

Installation

Anaconda

Update: You can now install pytorch-cluster via Anaconda for all major OS/PyTorch/CUDA combinations 🤗 Given that you have pytorch >= 1.8.0 installed, simply run

conda install pytorch-cluster -c pyg

Binaries

We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see here.

PyTorch 2.0

To install the binaries for PyTorch 2.0.0, simply run

pip install torch-cluster -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html

where ${CUDA} should be replaced by either cpu, cu117, or cu118 depending on your PyTorch installation.

cpu cu117 cu118
Linux ✅ ✅ ✅
Windows ✅ ✅ ✅
macOS ✅

PyTorch 1.13

To install the binaries for PyTorch 1.13.0, simply run

pip install torch-cluster -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html

where ${CUDA} should be replaced by either cpu, cu116, or cu117 depending on your PyTorch installation.

cpu cu116 cu117
Linux ✅ ✅ ✅
Windows ✅ ✅ ✅
macOS ✅

Note: Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). For older versions, you need to explicitly specify the latest supported version number or install via pip install --no-index in order to prevent a manual installation from source. You can look up the latest supported version number here.

From source

Ensure that at least PyTorch 1.4.0 is installed and verify that cuda/bin and cuda/include are in your $PATH and $CPATH respectively, e.g.:

$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0

$ python -c "import torch; print(torch.__version__)"
>>> 1.1.0

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
>>> /usr/local/cuda/include:...

Then run:

pip install torch-cluster

When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. In this case, ensure that the compute capabilities are set via TORCH_CUDA_ARCH_LIST, e.g.:

export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"

Functions

Graclus

A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight). The GPU algorithm is adapted from Fagginger Auer and Bisseling: A GPU Algorithm for Greedy Graph Matching (LNCS 2012)

import torch
from torch_cluster import graclus_cluster

row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
weight = torch.tensor([1., 1., 1., 1.])  # Optional edge weights.

cluster = graclus_cluster(row, col, weight)
print(cluster)
tensor([0, 0, 1])

VoxelGrid

A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.

import torch
from torch_cluster import grid_cluster

pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
size = torch.Tensor([5, 5])

cluster = grid_cluster(pos, size)
print(cluster)
tensor([0, 5, 3, 0, 1])

FarthestPointSampling

A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.

import torch
from torch_cluster import fps

x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
index = fps(x, batch, ratio=0.5, random_start=False)
print(index)
tensor([0, 3])

kNN-Graph

Computes graph edges to the nearest k points.

Args:

  • x (Tensor): Node feature matrix of shape [N, F].
  • k (int): The number of neighbors.
  • batch (LongTensor, optional): Batch vector of shape [N], which assigns each node to a specific example. batch needs to be sorted. (default: None)
  • loop (bool, optional): If True, the graph will contain self-loops. (default: False)
  • flow (string, optional): The flow direction when using in combination with message passing ("source_to_target" or "target_to_source"). (default: "source_to_target")
  • cosine (boolean, optional): If True, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: False)
  • num_workers (int): Number of workers to use for computation. Has no effect in case batch is not None, or the input lies on the GPU. (default: 1)
import torch
from torch_cluster import knn_graph

x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])

Radius-Graph

Computes graph edges to all points within a given distance.

Args:

  • x (Tensor): Node feature matrix of shape [N, F].
  • r (float): The radius.
  • batch (LongTensor, optional): Batch vector of shape [N], which assigns each node to a specific example. batch needs to be sorted. (default: None)
  • loop (bool, optional): If True, the graph will contain self-loops. (default: False)
  • max_num_neighbors (int, optional): The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than max_num_neighbors, returned neighbors are picked randomly. (default: 32)
  • flow (string, optional): The flow direction when using in combination with message passing ("source_to_target" or "target_to_source"). (default: "source_to_target")
  • num_workers (int): Number of workers to use for computation. Has no effect in case batch is not None, or the input lies on the GPU. (default: 1)
import torch
from torch_cluster import radius_graph

x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
        [0, 0, 1, 1, 2, 2, 3, 3]])

Nearest

Clusters points in x together which are nearest to a given query point in y. batch_{x,y} vectors need to be sorted.

import torch
from torch_cluster import nearest

x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
print(cluster)
tensor([0, 0, 1, 1])

RandomWalk-Sampling

Samples random walks of length walk_length from all node indices in start in the graph given by (row, col).

import torch
from torch_cluster import random_walk

row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])

walk = random_walk(row, col, start, walk_length=3)
print(walk)
tensor([[0, 1, 2, 4],
        [1, 3, 4, 2],
        [2, 4, 2, 1],
        [3, 4, 2, 4],
        [4, 3, 1, 0]])

Running tests

pytest

C++ API

torch-cluster also offers a C++ API that contains C++ equivalent of python models.

export Torch_DIR=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'`
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

More Repositories

1

pytorch_scatter

PyTorch Extension Library of Optimized Scatter Operations
Python
1,531
star
2

pytorch_sparse

PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
Python
990
star
3

deep-graph-matching-consensus

Implementation of "Deep Graph Matching Consensus" in PyTorch
Python
256
star
4

pytorch_spline_conv

Implementation of the Spline-Based Convolution Operator of SplineCNN in PyTorch
C++
170
star
5

pyg_autoscale

Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch
Python
157
star
6

table2excel

Convert and download html tables to a xlsx-file that can be opened in Microsoft Excel
JavaScript
112
star
7

deep-learning-cheatsheet

TeX
92
star
8

embedded_gcnn

Embedded Graph Convolutional Neural Networks (EGCNN) in TensorFlow
Jupyter Notebook
78
star
9

himp-gnn

Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Python
75
star
10

koa2-rest-api

ES6 RESTFul Koa2 API with Mongoose and OAuth2
JavaScript
75
star
11

graph-based-image-classification

Implementation of Planar Graph Convolutional Networks in TensorFlow
Python
43
star
12

pytorch_unique

PyTorch Extension Library of Optimized Unique Operation
Python
37
star
13

deep-learning-on-graphs

TeX
31
star
14

mongoose-i18n-localize

Mongoose plugin to support i18n and localization
JavaScript
22
star
15

dotfiles

Shell
18
star
16

RSClipperWrapper

A small and simple wrapper for the Clipper library to perform polygon clipping (Swift)
C++
17
star
17

RSShapeNode

A RSShapeNode object draws a shape by rendering a Core Graphics path offscreen using a disconnected CAShapeLayer and snapshots the image to a SKSpriteNode (Swift)
Swift
8
star
18

rusty1s.github.io

HTML
6
star
19

pytorch_bincount

Python
6
star
20

vim-happy-hacking

Vim Script
5
star
21

rusty1s

4
star
22

table-select

Allows you to select table row elements like in your standard finder environment
JavaScript
3
star
23

DigDeeper

the Mining / Crafting / Trading game (Swift 2.0)
C++
3
star
24

react-pattern-library

React Pattern Library for various UI components
JavaScript
3
star
25

mongoose-i18n-error

lightweight module for node.js/express.js to create beautiful mongoose i18n validation error messages
JavaScript
2
star
26

react-dev-config

Customizable Configuration for modern React apps
JavaScript
2
star
27

mongoose-integer

mongoose plugin to validate integer values within a Mongoose Schema
JavaScript
2
star
28

hyper-happy-hacking

JavaScript
1
star
29

RSRoundBorderedButton

Round bordered Button like the ones used in the Apple AppStore (Swift)
Swift
1
star
30

ComputationOffloading

Energieeffizienz durch Computation Offloading in der Cloud
1
star
31

react-documentviewer

React Documentviewer for various mimetypes
JavaScript
1
star
32

RSRandomPolygon

Swift
1
star
33

tensorflow-graph-plugin

Python
1
star
34

dependent-select-boxes

Allows a child select box to change its options dependent on its parent select box
JavaScript
1
star
35

texture-synthesis

TeX
1
star
36

RSScene

An inheritance of SKScene that adds a game logic loop to the runtime of a scene (Swift)
Swift
1
star
37

OCF-andCP-Networks

Qualitative Semantiken fĂźr DAGs - ein Vergleich von OCF- und CP-Netzwerken
1
star
38

js-dev-utils

JavaScript
1
star
39

RSContactGrid

A triangular/square/rotated square/hexagonal grid tile map with contact detection for any path (Swift 2.0)
Swift
1
star