• Stars
    star
    170
  • Rank 223,357 (Top 5 %)
  • Language
    C++
  • License
    MIT License
  • Created almost 7 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Implementation of the Spline-Based Convolution Operator of SplineCNN in PyTorch

Spline-Based Convolution Operator of SplineCNN

PyPI Version Testing Status Linting Status Code Coverage


This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:

Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels (CVPR 2018)

The operator works on all floating point data types and is implemented both for CPU and GPU.

Installation

Anaconda

Update: You can now install pytorch-spline-conv via Anaconda for all major OS/PyTorch/CUDA combinations πŸ€— Given that you have pytorch >= 1.8.0 installed, simply run

conda install pytorch-spline-conv -c pyg

Binaries

We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see here.

PyTorch 2.0

To install the binaries for PyTorch 2.0.0, simply run

pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html

where ${CUDA} should be replaced by either cpu, cu117, or cu118 depending on your PyTorch installation.

cpu cu117 cu118
Linux βœ… βœ… βœ…
Windows βœ… βœ… βœ…
macOS βœ…

PyTorch 1.13

To install the binaries for PyTorch 1.13.0, simply run

pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html

where ${CUDA} should be replaced by either cpu, cu116, or cu117 depending on your PyTorch installation.

cpu cu116 cu117
Linux βœ… βœ… βœ…
Windows βœ… βœ… βœ…
macOS βœ…

Note: Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). For older versions, you need to explicitly specify the latest supported version number or install via pip install --no-index in order to prevent a manual installation from source. You can look up the latest supported version number here.

From source

Ensure that at least PyTorch 1.4.0 is installed and verify that cuda/bin and cuda/include are in your $PATH and $CPATH respectively, e.g.:

$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
>>> /usr/local/cuda/include:...

Then run:

pip install torch-spline-conv

When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. In this case, ensure that the compute capabilities are set via TORCH_CUDA_ARCH_LIST, e.g.:

export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"

Usage

from torch_spline_conv import spline_conv

out = spline_conv(x,
                  edge_index,
                  pseudo,
                  weight,
                  kernel_size,
                  is_open_spline,
                  degree=1,
                  norm=True,
                  root_weight=None,
                  bias=None)

Applies the spline-based convolution operator

over several node features of an input graph. The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.

Parameters

  • x (Tensor) - Input node features of shape (number_of_nodes x in_channels).
  • edge_index (LongTensor) - Graph edges, given by source and target indices, of shape (2 x number_of_edges).
  • pseudo (Tensor) - Edge attributes, ie. pseudo coordinates, of shape (number_of_edges x number_of_edge_attributes) in the fixed interval [0, 1].
  • weight (Tensor) - Trainable weight parameters of shape (kernel_size x in_channels x out_channels).
  • kernel_size (LongTensor) - Number of trainable weight parameters in each edge dimension.
  • is_open_spline (ByteTensor) - Whether to use open or closed B-spline bases for each dimension.
  • degree (int, optional) - B-spline basis degree. (default: 1)
  • norm (bool, optional): Whether to normalize output by node degree. (default: True)
  • root_weight (Tensor, optional) - Additional shared trainable parameters for each feature of the root node of shape (in_channels x out_channels). (default: None)
  • bias (Tensor, optional) - Optional bias of shape (out_channels). (default: None)

Returns

  • out (Tensor) - Out node features of shape (number_of_nodes x out_channels).

Example

import torch
from torch_spline_conv import spline_conv

x = torch.rand((4, 2), dtype=torch.float)  # 4 nodes with 2 features each
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]])  # 6 edges
pseudo = torch.rand((6, 2), dtype=torch.float)  # two-dimensional edge attributes
weight = torch.rand((25, 2, 4), dtype=torch.float)  # 25 parameters for in_channels x out_channels
kernel_size = torch.tensor([5, 5])  # 5 parameters in each edge dimension
is_open_spline = torch.tensor([1, 1], dtype=torch.uint8)  # only use open B-splines
degree = 1  # B-spline degree of 1
norm = True  # Normalize output by node degree.
root_weight = torch.rand((2, 4), dtype=torch.float)  # separately weight root nodes
bias = None  # do not apply an additional bias

out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
                  is_open_spline, degree, norm, root_weight, bias)

print(out.size())
torch.Size([4, 4])  # 4 nodes with 4 features each

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{Fey/etal/2018,
  title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
  author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018},
}

Running tests

pytest

C++ API

torch-spline-conv also offers a C++ API that contains C++ equivalent of python models.

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

More Repositories

1

pytorch_scatter

PyTorch Extension Library of Optimized Scatter Operations
Python
1,531
star
2

pytorch_sparse

PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
Python
990
star
3

pytorch_cluster

PyTorch Extension Library of Optimized Graph Cluster Algorithms
C++
815
star
4

deep-graph-matching-consensus

Implementation of "Deep Graph Matching Consensus" in PyTorch
Python
256
star
5

pyg_autoscale

Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch
Python
157
star
6

table2excel

Convert and download html tables to a xlsx-file that can be opened in Microsoft Excel
JavaScript
112
star
7

deep-learning-cheatsheet

TeX
92
star
8

embedded_gcnn

Embedded Graph Convolutional Neural Networks (EGCNN) in TensorFlow
Jupyter Notebook
78
star
9

himp-gnn

Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Python
75
star
10

koa2-rest-api

ES6 RESTFul Koa2 API with Mongoose and OAuth2
JavaScript
75
star
11

graph-based-image-classification

Implementation of Planar Graph Convolutional Networks in TensorFlow
Python
43
star
12

pytorch_unique

PyTorch Extension Library of Optimized Unique Operation
Python
37
star
13

deep-learning-on-graphs

TeX
31
star
14

mongoose-i18n-localize

Mongoose plugin to support i18n and localization
JavaScript
22
star
15

dotfiles

Shell
18
star
16

RSClipperWrapper

A small and simple wrapper for the Clipper library to perform polygon clipping (Swift)
C++
17
star
17

RSShapeNode

A RSShapeNode object draws a shape by rendering a Core Graphics path offscreen using a disconnected CAShapeLayer and snapshots the image to a SKSpriteNode (Swift)
Swift
8
star
18

rusty1s.github.io

HTML
6
star
19

pytorch_bincount

Python
6
star
20

vim-happy-hacking

Vim Script
5
star
21

rusty1s

4
star
22

table-select

Allows you to select table row elements like in your standard finder environment
JavaScript
3
star
23

DigDeeper

the Mining / Crafting / Trading game (Swift 2.0)
C++
3
star
24

react-pattern-library

React Pattern Library for various UI components
JavaScript
3
star
25

mongoose-i18n-error

lightweight module for node.js/express.js to create beautiful mongoose i18n validation error messages
JavaScript
2
star
26

react-dev-config

Customizable Configuration for modern React apps
JavaScript
2
star
27

mongoose-integer

mongoose plugin to validate integer values within a Mongoose Schema
JavaScript
2
star
28

hyper-happy-hacking

JavaScript
1
star
29

RSRoundBorderedButton

Round bordered Button like the ones used in the Apple AppStore (Swift)
Swift
1
star
30

ComputationOffloading

Energieeffizienz durch Computation Offloading in der Cloud
1
star
31

react-documentviewer

React Documentviewer for various mimetypes
JavaScript
1
star
32

RSRandomPolygon

Swift
1
star
33

tensorflow-graph-plugin

Python
1
star
34

dependent-select-boxes

Allows a child select box to change its options dependent on its parent select box
JavaScript
1
star
35

texture-synthesis

TeX
1
star
36

RSScene

An inheritance of SKScene that adds a game logic loop to the runtime of a scene (Swift)
Swift
1
star
37

OCF-andCP-Networks

Qualitative Semantiken fΓΌr DAGs - ein Vergleich von OCF- und CP-Netzwerken
1
star
38

js-dev-utils

JavaScript
1
star
39

RSContactGrid

A triangular/square/rotated square/hexagonal grid tile map with contact detection for any path (Swift 2.0)
Swift
1
star