• Stars
    star
    737
  • Rank 61,490 (Top 2 %)
  • Language
    C++
  • License
    GNU General Publi...
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Robocentric Visual-Inertial Odometry

R-VIO

R-VIO is an efficient, lightweight, robocentric visual-inertial navigation algorithm for consistent 3D motion tracking using only a monocular camera and a single IMU. Different from the standard world-centric algorithms which directly estimate absolute motion of the mobile platform with respect to a fixed, gravity-aligned, global frame of reference, R-VIO i) estimates relative motion of higher accuracy with respect to a moving, local frame (the IMU frame here), and ii) incrementally updates global pose (orientation and position) through a composition step. This code implements our robocentric sliding-window filtering-based VIO formulation that was originally proposed in our IROS2018 paper and presented in detail in our recent IJRR paper:

  • Zheng Huai and Guoquan Huang, Robocentric visual-inertial odometry, The International Journal of Robotics Research (IJRR), 2022: download.
@article{huai2022robocentric,
  title={Robocentric visual-inertial odometry},
  author={Huai, Zheng and Huang, Guoquan},
  journal={The International Journal of Robotics Research},
  volume={41},
  number={7},
  pages={667--689},
  year={2022},
  publisher={SAGE Publications Sage UK: London, England}
}
  • Zheng Huai and Guoquan Huang, Robocentric visual-inertial odometry, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, Oct 1-5, 2018: download.
@inproceedings{huai2018robocentric,
  title     = {Robocentric visual-inertial odometry},
  author    = {Huai, Zheng and Huang, Guoquan},
  booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages     = {6319--6326},
  year      = {2018},
  address   = {Madrid, Spain}
}

This work has been further extended in our IEEE RA-L paper below, and the proposed R-VIO2 is also open sourced.

  • Zheng Huai and Guoquan Huang, Square-Root Robocentric Visual-Inertial Odometry with Online Spatiotemporal Calibration, IEEE Robotics and Automation Letters (RA-L), 2022: download.
@article{huai2022square,
  title={Square-root robocentric visual-inertial odometry with online spatiotemporal calibration},
  author={Huai, Zheng and Huang, Guoquan},
  journal={IEEE Robotics and Automation Letters},
  volume={7},
  number={4},
  pages={9961--9968},
  year={2022},
  publisher={IEEE}
}

IROS video (EuRoC MAV dataset): YouTube.

IJRR video (9.8km Urban Driving test): YouTube.

1. Prerequisites

We have tested this code under Ubuntu 16.04 and ROS Kinetic.

ROS

Download and install instructions can be found at: http://wiki.ros.org/kinetic/Installation/Ubuntu.

Additional ROS packages needed: tf, sensor_msgs, geometry_msgs, nav_msgs, cv_bridge, eigen_conversions.

Eigen

Download and install instructions can be found at: http://eigen.tuxfamily.org. Required at least 3.1.0.

OpenCV

Download and install instructions can be found at: http://opencv.org. Required at leat 2.4.3. Tested with 2.4.11 and 3.3.1.

2. Build and Run

First, git clone the repository and catkin_make it. Then, to run rvio with single camera/IMU inputs from the ROS topics /camera/image_raw and /imu, a config file in config folder and the corresponding launch file in launch folder (for example, rvio_euroc.yaml and euroc.launch are for EuRoC dataset) are needed, and to visualize the outputs of R-VIO please use rviz with the settings file rvio_rviz.rviz in config folder.

Terminal 1: roscore
Terminal 2: rviz (AND OPEN rvio_rviz.rviz IN THE CONFIG FOLDER)
Terminal 3: roslaunch rvio euroc.launch
Terminal 4: rosbag play --pause V1_01_easy.bag /cam0/image_raw:=/camera/image_raw /imu0:=/imu

Note that when testing the Machine Hall sequences, you should skip the data in the first few seconds (e.g., 40s for MH_01_easy) which are used for initializing the map for SLAM-based algorithms.

You can also run R-VIO with your own sensors (data) by creating a config file rvio_NAME_OF_YOUR_DATA.yaml in config folder and the corresponding launch file NAME_OF_YOUR_DATA.launch in launch folder, referring to our EuRoC example.

3. License

This code is released under GNU General Public License v3 (GPL-3.0).

More Repositories

1

open_vins

An open source platform for visual-inertial navigation research.
C++
2,111
star
2

kalibr_allan

IMU Allan standard deviation charts for use with Kalibr and inertial kalman filters.
MATLAB
577
star
3

MINS

An efficient and robust multisensor-aided inertial navigation system with online calibration that is capable of fusing IMU, camera, LiDAR, GPS/GNSS, and wheel sensors. Use cases: VINS/VIO, GPS-INS, LINS/LIO, multi-sensor fusion for localization and mapping (SLAM). This repository also provides multi-sensor simulation and data.
C++
427
star
4

cpi

Closed-form Preintegration for Graph-based Visual-Inertial Navigation
C++
249
star
5

R-VIO2

Square-Root Robocentric Visual-Inertial Odometry with Online Spatiotemporal Calibration
C++
228
star
6

ov_plane

A monocular plane-aided visual-inertial odometry
C++
197
star
7

calc

Convolutional Autoencoder for Loop Closure
Python
190
star
8

lips

LiDAR-Inertial 3D Plane Simulator
MATLAB
150
star
9

suo_slam

Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation
Python
133
star
10

android-camera-calibration

Updated (opencv3 and camera2 API) android camera calibration application
C++
118
star
11

calc2.0

CALC2.0: Combining Appearance, Semantic and Geometric Information for Robust and Efficient Visual Loop Closure
Python
95
star
12

vicon2gt

Vicon-IMU fusion for groundtruth trajectory generation.
C++
95
star
13

ov_maplab

Interface for OpenVINS with the maplab project
C++
82
star
14

ocekf-slam

Observability-Constrained (OC)-EKF for 2D SLAM
MATLAB
79
star
15

android-dataset-recorder

Dataset collection app that will collect both IMG and IMU measurements for offline processing
Java
60
star
16

icalib.github.io

Inertial Aided Multi-Sensor Calibration
60
star
17

ov_secondary

Secondary posegraph adapted for interfacing with OpenVINS, based on VINS-Mono / VINS-Fusion.
C++
59
star
18

ar_table_dataset

Small-scale indoor table AR visual-inertial datasets with 6DoF groundtruth.
Python
53
star
19

reach_ros_node

ROS driver for the Reach RTK GNSS module by Emlid
Python
36
star
20

mast_project

Underwater Camera and Sonar SLAM (Kevin and Linde's MAST class project)
C++
36
star
21

pointgrey_ladybug

ROS Driver for Pointgrey Ladybug Cameras
C++
30
star
22

clatt

cooperative localization and target tracking
MATLAB
28
star
23

android_sensors_driver

ROS Driver for Android Sensors (opencv3 and camera1 API)
Java
26
star
24

xsens_standalone

Python Standalone library for use with the xsens IMU
Python
19
star
25

rosbags

Github mirror of https://gitlab.com/ternaris/rosbags
Python
18
star
26

kitti_parser

C++ parser for the RAW KITTI dataset, with callbacks
C++
15
star
27

gps_path_pub

Handy publishing of a path and and frame from a single GPS sensor.
C++
13
star
28

CSO

Calibration the rigid transformation between the stereo and odometry
C++
12
star
29

img_imu_record

Easy recording of image and imu data to disk
C++
9
star
30

orb_slam_mapmerge

A Versatile and Accurate Monocular SLAM (with map merging)
C++
7
star
31

apriltags-cpp

A simple ros wrapper for apriltag-cpp
C++
7
star
32

vins_source

Helper package with launch files for getting imu and video sources.
CMake
6
star
33

microstrain_comm

IMU driver for the Microstrain 3DM-GX3®-25. Converted to run on the ROS framework.
C
5
star
34

Microstrain-3DM-GX3-35

ROS driver for Microstrain 3DM-GX3-35 IMU
C
3
star
35

firefly

AscTec Firefly Documentation
1
star
36

ZED_Odom_Grabber

Grab zed stereo images and odometry from turtlebot at the same time.
C++
1
star
37

dvs128-viewer

A driver for dvs128 camera
Java
1
star