• Stars
    star
    17,443
  • Rank 1,558 (Top 0.04 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 12 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Zipline, a Pythonic Algorithmic Trading Library

Zipline


Gitter pypi version status pypi pyversion status travis status appveyor status Coverage Status

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backtesting and live-trading engine powering Quantopian -- a free, community-centered, hosted platform for building and executing trading strategies. Quantopian also offers a fully managed service for professionals that includes Zipline, Alphalens, Pyfolio, FactSet data, and more.

Features

  • Ease of Use: Zipline tries to get out of your way so that you can focus on algorithm development. See below for a code example.
  • "Batteries Included": many common statistics like moving average and linear regression can be readily accessed from within a user-written algorithm.
  • PyData Integration: Input of historical data and output of performance statistics are based on Pandas DataFrames to integrate nicely into the existing PyData ecosystem.
  • Statistics and Machine Learning Libraries: You can use libraries like matplotlib, scipy, statsmodels, and sklearn to support development, analysis, and visualization of state-of-the-art trading systems.

Installation

Zipline currently supports Python 2.7, 3.5, and 3.6, and may be installed via either pip or conda.

Note: Installing Zipline is slightly more involved than the average Python package. See the full Zipline Install Documentation for detailed instructions.

For a development installation (used to develop Zipline itself), create and activate a virtualenv, then run the etc/dev-install script.

Quickstart

See our getting started tutorial.

The following code implements a simple dual moving average algorithm.

from zipline.api import order_target, record, symbol

def initialize(context):
    context.i = 0
    context.asset = symbol('AAPL')


def handle_data(context, data):
    # Skip first 300 days to get full windows
    context.i += 1
    if context.i < 300:
        return

    # Compute averages
    # data.history() has to be called with the same params
    # from above and returns a pandas dataframe.
    short_mavg = data.history(context.asset, 'price', bar_count=100, frequency="1d").mean()
    long_mavg = data.history(context.asset, 'price', bar_count=300, frequency="1d").mean()

    # Trading logic
    if short_mavg > long_mavg:
        # order_target orders as many shares as needed to
        # achieve the desired number of shares.
        order_target(context.asset, 100)
    elif short_mavg < long_mavg:
        order_target(context.asset, 0)

    # Save values for later inspection
    record(AAPL=data.current(context.asset, 'price'),
           short_mavg=short_mavg,
           long_mavg=long_mavg)

You can then run this algorithm using the Zipline CLI. First, you must download some sample pricing and asset data:

$ zipline ingest
$ zipline run -f dual_moving_average.py --start 2014-1-1 --end 2018-1-1 -o dma.pickle --no-benchmark

This will download asset pricing data data sourced from Quandl, and stream it through the algorithm over the specified time range. Then, the resulting performance DataFrame is saved in dma.pickle, which you can load and analyze from within Python.

You can find other examples in the zipline/examples directory.

Questions?

If you find a bug, feel free to open an issue and fill out the issue template.

Contributing

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome. Details on how to set up a development environment can be found in our development guidelines.

If you are looking to start working with the Zipline codebase, navigate to the GitHub issues tab and start looking through interesting issues. Sometimes there are issues labeled as Beginner Friendly or Help Wanted.

Feel free to ask questions on the mailing list or on Gitter.

Note

Please note that Zipline is not a community-led project. Zipline is maintained by the Quantopian engineering team, and we are quite small and often busy.

Because of this, we want to warn you that we may not attend to your pull request, issue, or direct mention in months, or even years. We hope you understand, and we hope that this note might help reduce any frustration or wasted time.

More Repositories

1

pyfolio

Portfolio and risk analytics in Python
Jupyter Notebook
5,596
star
2

alphalens

Performance analysis of predictive (alpha) stock factors
Jupyter Notebook
3,330
star
3

qgrid

An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks
Python
3,034
star
4

research_public

Quantitative research and educational materials
Jupyter Notebook
2,400
star
5

empyrical

Common financial risk and performance metrics. Used by zipline and pyfolio.
Python
1,268
star
6

trading_calendars

Calendars for various securities exchanges.
Python
608
star
7

qdb

Quantopian Remote Debugger for Python
Python
315
star
8

quantopian-algos

Library of algorithm scripts for Quantopian
Python
174
star
9

pgcontents

A Postgres-backed ContentsManager implementation for Jupyter
Python
150
star
10

coal-mine

Coal Mine - Periodic task execution monitor
Python
114
star
11

bayesalpha

Bayesian models to compute performance and uncertainty of returns and alpha.
Python
105
star
12

algorithm-component-library

A collection of code snippets that can be constructed into larger trading algorithms.
Python
103
star
13

PenguinDome

Simple Linux Mobile Device Management
Python
90
star
14

libpy

Utilities for writing C++ extension modules.
C++
82
star
15

warp_prism

Quickly move data from postgres to numpy or pandas.
C
64
star
16

qgrid-notebooks

Notebooks which will provide a demo of Qgrid functionality
Jupyter Notebook
20
star
17

serializable-traitlets

JSON-Serializable IPython Traitlets
Python
13
star
18

metautils

Utilities for writing metaclasses.
Python
8
star
19

DockORM

An object-relational mapper for docker containers.
Python
8
star
20

quantopian-drafts

Drafts for new Quantopian features.
6
star
21

aqueduct-client

Python wrapper for Quantopian's Aqueduct API
Python
2
star
22

nose_xunit_gevent

Xunit for the nose_gevented_multiprocess plugin
Python
2
star
23

quantopian.github.io

CSS
1
star