• Stars
    star
    608
  • Rank 73,735 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Calendars for various securities exchanges.

IMPORTANT NOTE

This package is currently unmaintained as the sponsor, quantopian, is going through corporate changes. As such there is a fork of this project that will receive more active maintenance, https://github.com/gerrymanoim/trading_calendars, and the actively developed and maintained alternative implimentation here: https://github.com/rsheftel/pandas_market_calendars . The process to merge these implementations will continue in those two respective repos.

trading_calendars

CI PyPI version Conda version

A Python library of exchange calendars, frequently used with Zipline.

Installation

$ pip install trading-calendars

Quick Start

import trading_calendars as tc
import pandas as pd
import pytz

Get all registered calendars with get_calendar_names:

>>> tc.get_calendar_names()[:5]
['XPHS', 'FWB', 'CFE', 'CMES', 'XSGO']

Get a calendar with get_calendar:

>>> xnys = tc.get_calendar("XNYS")

Working with sessions:

>>> xnys.is_session(pd.Timestamp("2020-01-01"))
False

>>> xnys.next_open(pd.Timestamp("2020-01-01"))
Timestamp('2020-01-02 14:31:00+0000', tz='UTC')

>>> pd.Timestamp("2020-01-01", tz=pytz.UTC)+xnys.day
Timestamp('2020-01-02 00:00:00+0000', tz='UTC')

>>> xnys.previous_close(pd.Timestamp("2020-01-01"))
Timestamp('2019-12-31 21:00:00+0000', tz='UTC')

>>> xnys.sessions_in_range(
>>>     pd.Timestamp("2020-01-01", tz=pytz.UTC),
>>>     pd.Timestamp("2020-01-10", tz=pytz.UTC)
>>> )
DatetimeIndex(['2020-01-02 00:00:00+00:00', '2020-01-03 00:00:00+00:00',
                '2020-01-06 00:00:00+00:00', '2020-01-07 00:00:00+00:00',
                '2020-01-08 00:00:00+00:00', '2020-01-09 00:00:00+00:00',
                '2020-01-10 00:00:00+00:00'],
                dtype='datetime64[ns, UTC]', freq='C')

>>> xnys.sessions_window(
>>>     pd.Timestamp("2020-01-02", tz=pytz.UTC),
>>>     7
>>> )
DatetimeIndex(['2020-01-02 00:00:00+00:00', '2020-01-03 00:00:00+00:00',
                '2020-01-06 00:00:00+00:00', '2020-01-07 00:00:00+00:00',
                '2020-01-08 00:00:00+00:00', '2020-01-09 00:00:00+00:00',
                '2020-01-10 00:00:00+00:00', '2020-01-13 00:00:00+00:00'],
                dtype='datetime64[ns, UTC]', freq='C')

NOTE: see the TradingCalendar class for more advanced usage.

Trading calendars also supports command line usage, printing a unix-cal like calendar indicating which days are trading sessions or holidays.

tcal XNYS 2020
                                        2020
        January                        February                        March
Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa
            [ 1]  2   3 [ 4]                           [ 1]
[ 5]  6   7   8   9  10 [11]   [ 2]  3   4   5   6   7 [ 8]   [ 1]  2   3   4   5   6 [ 7]
[12] 13  14  15  16  17 [18]   [ 9] 10  11  12  13  14 [15]   [ 8]  9  10  11  12  13 [14]
[19][20] 21  22  23  24 [25]   [16][17] 18  19  20  21 [22]   [15] 16  17  18  19  20 [21]
[26] 27  28  29  30  31        [23] 24  25  26  27  28 [29]   [22] 23  24  25  26  27 [28]
                                                            [29] 30  31

        April                           May                            June
Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa
            1   2   3 [ 4]                         1 [ 2]         1   2   3   4   5 [ 6]
[ 5]  6   7   8   9 [10][11]   [ 3]  4   5   6   7   8 [ 9]   [ 7]  8   9  10  11  12 [13]
[12] 13  14  15  16  17 [18]   [10] 11  12  13  14  15 [16]   [14] 15  16  17  18  19 [20]
[19] 20  21  22  23  24 [25]   [17] 18  19  20  21  22 [23]   [21] 22  23  24  25  26 [27]
[26] 27  28  29  30            [24][25] 26  27  28  29 [30]   [28] 29  30
                               [31]

            July                          August                       September
Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa
            1   2 [ 3][ 4]                           [ 1]             1   2   3   4 [ 5]
[ 5]  6   7   8   9  10 [11]   [ 2]  3   4   5   6   7 [ 8]   [ 6][ 7]  8   9  10  11 [12]
[12] 13  14  15  16  17 [18]   [ 9] 10  11  12  13  14 [15]   [13] 14  15  16  17  18 [19]
[19] 20  21  22  23  24 [25]   [16] 17  18  19  20  21 [22]   [20] 21  22  23  24  25 [26]
[26] 27  28  29  30  31        [23] 24  25  26  27  28 [29]   [27] 28  29  30
                               [30] 31

        October                        November                       December
Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa     Su  Mo  Tu  We  Th  Fr  Sa
                1   2 [ 3]                                            1   2   3   4 [ 5]
[ 4]  5   6   7   8   9 [10]   [ 1]  2   3   4   5   6 [ 7]   [ 6]  7   8   9  10  11 [12]
[11] 12  13  14  15  16 [17]   [ 8]  9  10  11  12  13 [14]   [13] 14  15  16  17  18 [19]
[18] 19  20  21  22  23 [24]   [15] 16  17  18  19  20 [21]   [20] 21  22  23  24 [25][26]
[25] 26  27  28  29  30 [31]   [22] 23  24  25 [26] 27 [28]   [27] 28  29  30  31
                               [29] 30
tcal XNYS 1 2020
        January 2020
Su  Mo  Tu  We  Th  Fr  Sa
            [ 1]  2   3 [ 4]
[ 5]  6   7   8   9  10 [11]
[12] 13  14  15  16  17 [18]
[19][20] 21  22  23  24 [25]
[26] 27  28  29  30  31

Frequently Asked Questions

Why are open times one minute late?

Due to its historical use in the Zipline backtesting system, trading_calendars will only indicate a market is open upon the completion of the first minute bar in a day. Zipline uses minute bars labeled with the end of the bar, e.g. 9:31AM for 9:30-9:31AM. As an example, on a regular trading day for NYSE:

  • 9:30:00 is treated as closed.
  • 9:30:01 is treated as closed.
  • 9:31:00 is the first time treated as open.
  • 16:00:00 is treated as open
  • 16:00:01 is treated as closed

This may change in the future.

Calendar Support

Exchange ISO Code Country Version Added Exchange Website (English)
New York Stock Exchange XNYS USA 1.0 https://www.nyse.com/index
CBOE Futures XCBF USA 1.0 https://markets.cboe.com/us/futures/overview/
Chicago Mercantile Exchange CMES USA 1.0 https://www.cmegroup.com/
ICE US IEPA USA 1.0 https://www.theice.com/index
Toronto Stock Exchange XTSE Canada 1.0 https://www.tsx.com/
BMF Bovespa BVMF Brazil 1.0 http://www.b3.com.br/en_us/
London Stock Exchange XLON England 1.0 https://www.londonstockexchange.com/home/homepage.htm
Euronext Amsterdam XAMS Netherlands 1.2 https://www.euronext.com/en/regulation/amsterdam
Euronext Brussels XBRU Belgium 1.2 https://www.euronext.com/en/regulation/brussels
Euronext Lisbon XLIS Portugal 1.2 https://www.euronext.com/en/regulation/lisbon
Euronext Paris XPAR France 1.2 https://www.euronext.com/en/regulation/paris
Frankfurt Stock Exchange XFRA Germany 1.2 http://en.boerse-frankfurt.de/
SIX Swiss Exchange XSWX Switzerland 1.2 https://www.six-group.com/exchanges/index.html
Tokyo Stock Exchange XTKS Japan 1.2 https://www.jpx.co.jp/english/
Austrialian Securities Exchange XASX Australia 1.3 https://www.asx.com.au/
Bolsa de Madrid XMAD Spain 1.3 http://www.bolsamadrid.es/ing/aspx/Portada/Portada.aspx
Borsa Italiana XMIL Italy 1.3 https://www.borsaitaliana.it/homepage/homepage.en.htm
New Zealand Exchange XNZE New Zealand 1.3 https://www.nzx.com/
Wiener Borse XWBO Austria 1.3 https://www.wienerborse.at/en/
Hong Kong Stock Exchange XHKG Hong Kong 1.3 https://www.hkex.com.hk/?sc_lang=en
Copenhagen Stock Exchange XCSE Denmark 1.4 http://www.nasdaqomxnordic.com/
Helsinki Stock Exchange XHEL Finland 1.4 http://www.nasdaqomxnordic.com/
Stockholm Stock Exchange XSTO Sweden 1.4 http://www.nasdaqomxnordic.com/
Oslo Stock Exchange XOSL Norway 1.4 https://www.oslobors.no/ob_eng/
Irish Stock Exchange XDUB Ireland 1.4 http://www.ise.ie/
Bombay Stock Exchange XBOM India 1.5 https://www.bseindia.com
Singapore Exchange XSES Singapore 1.5 https://www.sgx.com
Shanghai Stock Exchange XSHG China 1.5 http://english.sse.com.cn
Korea Exchange XKRX South Korea 1.6 http://global.krx.co.kr
Iceland Stock Exchange XICE Iceland 1.7 http://www.nasdaqomxnordic.com/
Poland Stock Exchange XWAR Poland 1.9 http://www.gpw.pl
Santiago Stock Exchange XSGO Chile 1.9 http://inter.bolsadesantiago.com/sitios/en/Paginas/home.aspx
Colombia Securities Exchange XBOG Colombia 1.9 https://www.bvc.com.co/nueva/index_en.html
Mexican Stock Exchange XMEX Mexico 1.9 https://www.bmv.com.mx
Lima Stock Exchange XLIM Peru 1.9 https://www.bvl.com.pe
Prague Stock Exchange XPRA Czech Republic 1.9 https://www.pse.cz/en/
Budapest Stock Exchange XBUD Hungary 1.10 https://bse.hu/
Athens Stock Exchange ASEX Greece 1.10 http://www.helex.gr/
Istanbul Stock Exchange XIST Turkey 1.10 https://www.borsaistanbul.com/en/
Johannesburg Stock Exchange XJSE South Africa 1.10 https://www.jse.co.za/z
Malaysia Stock Exchange XKLS Malaysia 1.11 http://www.bursamalaysia.com/market/
Moscow Exchange XMOS Russia 1.11 https://www.moex.com/en/
Philippine Stock Exchange XPHS Philippines 1.11 https://www.pse.com.ph/stockMarket/home.html
Stock Exchange of Thailand XBKK Thailand 1.11 https://www.set.or.th/set/mainpage.do?language=en&country=US
Indonesia Stock Exchange XIDX Indonesia 1.11 https://www.idx.co.id/
Taiwan Stock Exchange Corp. XTAI Taiwan 1.11 https://www.twse.com.tw/en/
Buenos Aires Stock Exchange XBUE Argentina 1.11 https://www.bcba.sba.com.ar/
Pakistan Stock Exchange XKAR Pakistan 1.11 https://www.psx.com.pk/

Note that exchange calendars are defined by their ISO-10383 market identifier code.

More Repositories

1

zipline

Zipline, a Pythonic Algorithmic Trading Library
Python
17,443
star
2

pyfolio

Portfolio and risk analytics in Python
Jupyter Notebook
5,596
star
3

alphalens

Performance analysis of predictive (alpha) stock factors
Jupyter Notebook
3,330
star
4

qgrid

An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks
Python
3,034
star
5

research_public

Quantitative research and educational materials
Jupyter Notebook
2,400
star
6

empyrical

Common financial risk and performance metrics. Used by zipline and pyfolio.
Python
1,268
star
7

qdb

Quantopian Remote Debugger for Python
Python
315
star
8

quantopian-algos

Library of algorithm scripts for Quantopian
Python
174
star
9

pgcontents

A Postgres-backed ContentsManager implementation for Jupyter
Python
150
star
10

coal-mine

Coal Mine - Periodic task execution monitor
Python
114
star
11

bayesalpha

Bayesian models to compute performance and uncertainty of returns and alpha.
Python
105
star
12

algorithm-component-library

A collection of code snippets that can be constructed into larger trading algorithms.
Python
103
star
13

PenguinDome

Simple Linux Mobile Device Management
Python
90
star
14

libpy

Utilities for writing C++ extension modules.
C++
82
star
15

warp_prism

Quickly move data from postgres to numpy or pandas.
C
64
star
16

qgrid-notebooks

Notebooks which will provide a demo of Qgrid functionality
Jupyter Notebook
20
star
17

serializable-traitlets

JSON-Serializable IPython Traitlets
Python
13
star
18

metautils

Utilities for writing metaclasses.
Python
8
star
19

DockORM

An object-relational mapper for docker containers.
Python
8
star
20

quantopian-drafts

Drafts for new Quantopian features.
6
star
21

aqueduct-client

Python wrapper for Quantopian's Aqueduct API
Python
2
star
22

nose_xunit_gevent

Xunit for the nose_gevented_multiprocess plugin
Python
2
star
23

quantopian.github.io

CSS
1
star