• Stars
    star
    694
  • Rank 65,170 (Top 2 %)
  • Language
    JavaScript
  • License
    Other
  • Created almost 10 years ago
  • Updated about 8 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A tutorial on the t-SNE learning algorithm

An illustrated introduction to the t-SNE algorithm

In the Big Data era, data is not only becoming bigger and bigger; it is also becoming more and more complex. This translates into a spectacular increase of the dimensionality of the data. For example, the dimensionality of a set of images is the number of pixels in any image, which ranges from thousands to millions.

Computers have no problem processing that many dimensions. However, we humans are limited to three dimensions. Computers still need us (thankfully), so we often need ways to effectively visualize high-dimensional data before handing it over to the computer.

How can we possibly reduce the dimensionality of a dataset from an arbitrary number to two or three, which is what we're doing when we visualize data on a screen?

The answer lies in the observation that many real-world datasets have a low intrinsic dimensionality, even though they're embedded in a high-dimensional space. Imagine that you're shooting a panoramic landscape with your camera, while rotating around yourself. We can consider every picture as a point in a 16,000,000-dimensional space (assuming a 16 megapixels camera). Yet, the set of pictures approximately lie in a three-dimensional space (yaw, pitch, roll). This low-dimensional space is embedded within the high-dimensional space in a complex, nonlinear way. Hidden in the data, this structure can only be recovered via specific mathematical methods.

This is the topic of manifold learning, also called nonlinear dimensionality reduction, a branch of machine learning (more specifically, unsupervised learning). It is still an active area of research today to develop algorithms that can automatically recover a hidden structure in a high-dimensional dataset.

This post is an introduction to a popular dimensonality reduction algorithm: t-distributed stochastic neighbor embedding (t-SNE). Developed by Laurens van der Maaten and Geoffrey Hinton (see the original paper here), this algorithm has been successfully applied to many real-world datasets. Here, we'll follow the original paper and describe the key mathematical concepts of the method, when applied to a toy dataset (handwritten digits). We'll use Python and the scikit-learn library.

Visualizing handwritten digits

Let's first import a few libraries.

# That's an impressive list of imports.
import numpy as np
from numpy import linalg
from numpy.linalg import norm
from scipy.spatial.distance import squareform, pdist

# We import sklearn.
import sklearn
from sklearn.manifold import TSNE
from sklearn.datasets import load_digits
from sklearn.preprocessing import scale

# We'll hack a bit with the t-SNE code in sklearn 0.15.2.
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.manifold.t_sne import (_joint_probabilities,
                                    _kl_divergence)
from sklearn.utils.extmath import _ravel
# Random state.
RS = 20150101

# We'll use matplotlib for graphics.
import matplotlib.pyplot as plt
import matplotlib.patheffects as PathEffects
import matplotlib
%matplotlib inline

# We import seaborn to make nice plots.
import seaborn as sns
sns.set_style('darkgrid')
sns.set_palette('muted')
sns.set_context("notebook", font_scale=1.5,
                rc={"lines.linewidth": 2.5})

# We'll generate an animation with matplotlib and moviepy.
from moviepy.video.io.bindings import mplfig_to_npimage
import moviepy.editor as mpy

Now we load the classic handwritten digits datasets. It contains 1797 images with \(8*8=64\) pixels each.

digits = load_digits()
digits.data.shape
print(digits['DESCR'])

Here are the images:

nrows, ncols = 2, 5
plt.figure(figsize=(6,3))
plt.gray()
for i in range(ncols * nrows):
    ax = plt.subplot(nrows, ncols, i + 1)
    ax.matshow(digits.images[i,...])
    plt.xticks([]); plt.yticks([])
    plt.title(digits.target[i])
plt.savefig('images/digits-generated.png', dpi=150)

Digits

Now let's run the t-SNE algorithm on the dataset. It just takes one line with scikit-learn.

# We first reorder the data points according to the handwritten numbers.
X = np.vstack([digits.data[digits.target==i]
               for i in range(10)])
y = np.hstack([digits.target[digits.target==i]
               for i in range(10)])
digits_proj = TSNE(random_state=RS).fit_transform(X)

Here is a utility function used to display the transformed dataset. The color of each point refers to the actual digit (of course, this information was not used by the dimensionality reduction algorithm).

def scatter(x, colors):
    # We choose a color palette with seaborn.
    palette = np.array(sns.color_palette("hls", 10))

    # We create a scatter plot.
    f = plt.figure(figsize=(8, 8))
    ax = plt.subplot(aspect='equal')
    sc = ax.scatter(x[:,0], x[:,1], lw=0, s=40,
                    c=palette[colors.astype(np.int)])
    plt.xlim(-25, 25)
    plt.ylim(-25, 25)
    ax.axis('off')
    ax.axis('tight')

    # We add the labels for each digit.
    txts = []
    for i in range(10):
        # Position of each label.
        xtext, ytext = np.median(x[colors == i, :], axis=0)
        txt = ax.text(xtext, ytext, str(i), fontsize=24)
        txt.set_path_effects([
            PathEffects.Stroke(linewidth=5, foreground="w"),
            PathEffects.Normal()])
        txts.append(txt)

    return f, ax, sc, txts

Here is the result.

scatter(digits_proj, y)
plt.savefig('images/digits_tsne-generated.png', dpi=120)

Transformed digits with t-SNE

We observe that the images corresponding to the different digits are clearly separated into different clusters of points.

Mathematical framework

Let's explain how the algorithm works. First, a few definitions.

A data point is a point \(x_i\) in the original data space \(\mathbf{R}^D\), where \(D=64\) is the dimensionality of the data space. Every point is an image of a handwritten digit here. There are \(N=1797\) points.

A map point is a point \(y_i\) in the map space \(\mathbf{R}^2\). This space will contain our final representation of the dataset. There is a bijection between the data points and the map points: every map point represents one of the original images.

How do we choose the positions of the map points? We want to conserve the structure of the data. More specifically, if two data points are close together, we want the two corresponding map points to be close too. Let's \(\left| x_i - x_j \right|\) be the Euclidean distance between two data points, and \(\left| y_i - y_j \right|\) the distance between the map points. We first define a conditional similarity between the two data points:

\(p_{j|i} = \frac{\exp\left(-\left| x_i - x_j\right|^2 \big/ 2\sigma_i^2\right)}{\displaystyle\sum_{k \neq i} \exp\left(-\left| x_i - x_k\right|^2 \big/ 2\sigma_i^2\right)}\)

This measures how close \(x_j\) is from \(x_i\), considering a Gaussian distribution around \(x_i\) with a given variance \(\sigma_i^2\). This variance is different for every point; it is chosen such that points in dense areas are given a smaller variance than points in sparse areas. The original paper details how this variance is computed exactly.

Now, we define the similarity as a symmetrized version of the conditional similarity:

\(p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}\)

We obtain a similarity matrix for our original dataset. What does this matrix look like?

Similarity matrix

The following function computes the similarity with a constant \(\sigma\).

def _joint_probabilities_constant_sigma(D, sigma):
    P = np.exp(-D**2/2 * sigma**2)
    P /= np.sum(P, axis=1)
    return P

We now compute the similarity with a \(\sigma_i\) depending on the data point (found via a binary search, according to the original t-SNE paper). This algorithm is implemented in the _joint_probabilities private function in scikit-learn's code.

# Pairwise distances between all data points.
D = pairwise_distances(X, squared=True)
# Similarity with constant sigma.
P_constant = _joint_probabilities_constant_sigma(D, .002)
# Similarity with variable sigma.
P_binary = _joint_probabilities(D, 30., False)
# The output of this function needs to be reshaped to a square matrix.
P_binary_s = squareform(P_binary)

We can now display the distance matrix of the data points, and the similarity matrix with both a constant and variable sigma.

plt.figure(figsize=(12, 4))
pal = sns.light_palette("blue", as_cmap=True)

plt.subplot(131)
plt.imshow(D[::10, ::10], interpolation='none', cmap=pal)
plt.axis('off')
plt.title("Distance matrix", fontdict={'fontsize': 16})

plt.subplot(132)
plt.imshow(P_constant[::10, ::10], interpolation='none', cmap=pal)
plt.axis('off')
plt.title("$p_{j|i}$ (constant $\sigma$)", fontdict={'fontsize': 16})

plt.subplot(133)
plt.imshow(P_binary_s[::10, ::10], interpolation='none', cmap=pal)
plt.axis('off')
plt.title("$p_{j|i}$ (variable $\sigma$)", fontdict={'fontsize': 16})
plt.savefig('images/similarity-generated.png', dpi=120)

We can already observe the 10 groups in the data, corresponding to the 10 numbers.

Let's also define a similarity matrix for our map points.

\(q_{ij} = \frac{f(\left| x_i - x_j\right|)}{\displaystyle\sum_{k \neq i} f(\left| x_i - x_k\right|)} \quad \textrm{with} \quad f(z) = \frac{1}{1+z^2}\)

This is the same idea as for the data points, but with a different distribution (t-Student with one degree of freedom, or Cauchy distribution, instead of a Gaussian distribution). We'll elaborate on this choice later.

Whereas the data similarity matrix \(\big(p_{ij}\big)\) is fixed, the map similarity matrix \(\big(q_{ij}\big)\) depends on the map points. What we want is for these two matrices to be as close as possible. This would mean that similar data points yield similar map points.

A physical analogy

Let's assume that our map points are all connected with springs. The stiffness of a spring connecting points \(i\) and \(j\) depends on the mismatch between the similarity of the two data points and the similarity of the two map points, that is, \(p_{ij} - q_{ij}\). Now, we let the system evolve according to the laws of physics. If two map points are far apart while the data points are close, they are attracted together. If they are nearby while the data points are dissimilar, they are repelled.

The final mapping is obtained when the equilibrium is reached.

Here is an illustration of a dynamic graph layout based on a similar idea. Nodes are connected via springs and the system evolves according to law of physics (example by Mike Bostock).

<iframe src="https://d3ansictanv2wj.cloudfront.net/rossant-f06184034ba66a0bd06a-001.html" style="border: 0; width: 620px; height: 440px; margin: 0; padding: 0;" sandbox="allow-scripts" ></iframe>

Algorithm

Remarkably, this physical analogy stems naturally from the mathematical algorithm. It corresponds to minimizing the Kullback-Leiber divergence between the two distributions \(\big(p_{ij}\big)\) and \(\big(q_{ij}\big)\):

\(KL(P||Q) = \sum_{i, j} p_{ij} , \log \frac{p_{ij}}{q_{ij}}.\)

This measures the distance between our two similarity matrices.

To minimize this score, we perform a gradient descent. The gradient can be computed analytically:

\(\frac{\partial , KL(P || Q)}{\partial y_i} = 4 \sum_j (p_{ij} - q_{ij}) g\left( \left| x_i - x_j\right| \right) u_{ij} \quad \textrm{where} , g(z) = \frac{z}{1+z^2}.\)

Here, \(u_{ij}\) is a unit vector going from \(y_j\) to \(y_i\). This gradient expresses the sum of all spring forces applied to map point \(i\).

Let's illustrate this process by creating an animation of the convergence. We'll have to monkey-patch the internal _gradient_descent() function from scikit-learn's t-SNE implementation in order to register the position of the map points at every iteration.

# This list will contain the positions of the map points at every iteration.
positions = []
def _gradient_descent(objective, p0, it, n_iter, n_iter_without_progress=30,
                      momentum=0.5, learning_rate=1000.0, min_gain=0.01,
                      min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0,
                      args=[]):
    # The documentation of this function can be found in scikit-learn's code.
    p = p0.copy().ravel()
    update = np.zeros_like(p)
    gains = np.ones_like(p)
    error = np.finfo(np.float).max
    best_error = np.finfo(np.float).max
    best_iter = 0

    for i in range(it, n_iter):
        # We save the current position.
        positions.append(p.copy())

        new_error, grad = objective(p, *args)
        error_diff = np.abs(new_error - error)
        error = new_error
        grad_norm = linalg.norm(grad)

        if error < best_error:
            best_error = error
            best_iter = i
        elif i - best_iter > n_iter_without_progress:
            break
        if min_grad_norm >= grad_norm:
            break
        if min_error_diff >= error_diff:
            break

        inc = update * grad >= 0.0
        dec = np.invert(inc)
        gains[inc] += 0.05
        gains[dec] *= 0.95
        np.clip(gains, min_gain, np.inf)
        grad *= gains
        update = momentum * update - learning_rate * grad
        p += update

    return p, error, i
sklearn.manifold.t_sne._gradient_descent = _gradient_descent

Let's run the algorithm again, but this time saving all intermediate positions.

X_proj = TSNE(random_state=RS).fit_transform(X)
X_iter = np.dstack(position.reshape(-1, 2)
                   for position in positions)

We create an animation using MoviePy.

f, ax, sc, txts = scatter(X_iter[..., -1], y)

def make_frame_mpl(t):
    i = int(t*40)
    x = X_iter[..., i]
    sc.set_offsets(x)
    for j, txt in zip(range(10), txts):
        xtext, ytext = np.median(x[y == j, :], axis=0)
        txt.set_x(xtext)
        txt.set_y(ytext)
    return mplfig_to_npimage(f)

animation = mpy.VideoClip(make_frame_mpl,
                          duration=X_iter.shape[2]/40.)
animation.write_gif("images/animation.gif", fps=20)

We can clearly observe the different phases of the optimization, as described in the original paper.

Let's also create an animation of the similarity matrix of the map points. We'll observe that it's getting closer and closer to the similarity matrix of the data points.

n = 1. / (pdist(X_iter[..., -1], "sqeuclidean") + 1)
Q = n / (2.0 * np.sum(n))
Q = squareform(Q)

f = plt.figure(figsize=(6, 6))
ax = plt.subplot(aspect='equal')
im = ax.imshow(Q, interpolation='none', cmap=pal)
plt.axis('tight')
plt.axis('off')

def make_frame_mpl(t):
    i = int(t*40)
    n = 1. / (pdist(X_iter[..., i], "sqeuclidean") + 1)
    Q = n / (2.0 * np.sum(n))
    Q = squareform(Q)
    im.set_data(Q)
    return mplfig_to_npimage(f)

animation = mpy.VideoClip(make_frame_mpl,
                          duration=X_iter.shape[2]/40.)
animation.write_gif("images/animation_matrix.gif", fps=20)

The t-Student distribution

Let's now explain the choice of the t-Student distribution for the map points, while a normal distribution is used for the data points. It is well known that the volume of the \(N\)-dimensional ball of radius \(r\) scales as \(r^N\). When \(N\) is large, if we pick random points uniformly in the ball, most points will be close to the surface, and very few will be near the center.

This is illustrated by the following simulation, showing the distribution of the distances of these points, for different dimensions.

npoints = 1000
plt.figure(figsize=(15, 4))
for i, D in enumerate((2, 5, 10)):
    # Normally distributed points.
    u = np.random.randn(npoints, D)
    # Now on the sphere.
    u /= norm(u, axis=1)[:, None]
    # Uniform radius.
    r = np.random.rand(npoints, 1)
    # Uniformly within the ball.
    points = u * r**(1./D)
    # Plot.
    ax = plt.subplot(1, 3, i+1)
    ax.set_xlabel('Ball radius')
    if i == 0:
        ax.set_ylabel('Distance from origin')
    ax.hist(norm(points, axis=1),
            bins=np.linspace(0., 1., 50))
    ax.set_title('D=%d' % D, loc='left')
plt.savefig('images/spheres-generated.png', dpi=100, bbox_inches='tight')

Spheres

When reducing the dimensionality of a dataset, if we used the same Gaussian distribution for the data points and the map points, we would get an imbalance in the distribution of the distances of a point's neighbors. This is because the distribution of the distances is so different between a high-dimensional space and a low-dimensional space. Yet, the algorithm tries to reproduce the same distances in the two spaces. This imbalance would lead to an excess of attraction forces and a sometimes unappealing mapping. This is actually what happens in the original SNE algorithm, by Hinton and Roweis (2002).

The t-SNE algorithm works around this problem by using a t-Student with one degree of freedom (or Cauchy) distribution for the map points. This distribution has a much heavier tail than the Gaussian distribution, which compensates the original imbalance. For a given similarity between two data points, the two corresponding map points will need to be much further apart in order for their similarity to match the data similarity. This can be seen in the following plot.

z = np.linspace(0., 5., 1000)
gauss = np.exp(-z**2)
cauchy = 1/(1+z**2)
plt.plot(z, gauss, label='Gaussian distribution')
plt.plot(z, cauchy, label='Cauchy distribution')
plt.legend()
plt.savefig('images/distributions-generated.png', dpi=100)

Gaussian and Cauchy distributions

Using this distribution leads to more effective data visualizations, where clusters of points are more distinctly separated.

Conclusion

The t-SNE algorithm provides an effective method to visualize a complex dataset. It successfully uncovers hidden structures in the data, exposing natural clusters and smooth nonlinear variations along the dimensions. It has been implemented in many languages, including Python, and it can be easily used thanks to the scikit-learn library.

The references below describe some optimizations and improvements that can be made to the algorithm and implementations. In particular, the algorithm described here is quadratic in the number of samples, which makes it unscalable to large datasets. One could for example obtain an \(O(N \log N)\) complexity by using the Barnes-Hut algorithm to accelerate the N-body simulation via a quadtree or an octree.

References

More Repositories

1

Learning-OpenCV-3_examples

C++
2,254
star
2

open_government

Open Government, released as part of #PDFtribute
1,293
star
3

data_structures_and_algorithms_using_javascript

JavaScript
741
star
4

HTMLBook

Let's write books in HTML!
XSLT
631
star
5

etudes-for-elixir

Companion exercises for Introducing Elixir
Elixir
511
star
6

doing_data_science

This is the example code repository for Doing Data Science by Cathy O'Neil and Rachel Schutt (O'Reilly Media)
469
star
7

thebe

Jupyter javascript plugin for static sites
JavaScript
262
star
8

etudes-for-erlang

Companion exercises for O'Reilly Media's "Introducing Erlang"
Erlang
247
star
9

essential-sqlalchemy-2e

Jupyter Notebook
175
star
10

functional_thinking

This is the example code repository for Functional Thinking by Neal Ford (O'Reilly Media)
146
star
11

svg-essentials-examples

HTML
137
star
12

Using_SVG

Code examples and other supplementary material for the book Using SVG with CSS3 and HTML5.
HTML
107
star
13

iOS7_Programming_Cookbook

This is the example code repository for iOS 7 Programming Cookbook by Vandad Nahavandipoor (O'Reilly Media)
Objective-C
92
star
14

building_maintainable_software

C#
87
star
15

feedback_control_for_computer_systems

This is the example code repository for Feedback Control for Computer Systems by Philipp K. Janert (O'Reilly Media)
Python
87
star
16

97-things-every-agile-developer-should-know

97 Things Every Agile Software Developer Should Know
78
star
17

programming_rust

77
star
18

python_epiphanies

73
star
19

Learning_PHP

PHP
71
star
20

restful_java_jax-rs_2_0

This is the example code repository for RESTful Java with JAX-RS 2.0 by Bill Burke (O'Reilly Media)
65
star
21

java_cookbook_3e

This is the example code repository for Java Cookbook, 3E by Ian F. Darwin (O'Reilly Media)
63
star
22

docbook2asciidoc

XSL for transforming DocBook to AsciiDoc
XSLT
62
star
23

creating_apps_in_kivy

54
star
24

c_sharp_6_cookbook

53
star
25

decentralized_applications

53
star
26

bgp_in_the_data_center

Python
51
star
27

Data_Science_with_Java

Java
48
star
28

asciidoctor-htmlbook

Templates for the htmlbook backend for Asciidoctor
Ruby
44
star
29

ASP_NET-MVC-5-with-Bootstrap-and-Knockout_js

43
star
30

programming_hive

41
star
31

erlang_programming

This is the example code repository for Erlang Programming by Francesco Cesarini and Simon Thompson (O'Reilly Media)
41
star
32

c-in-a-nutshell-2E

39
star
33

atlas-cli

A command line for building and publishing (HTML only) Atlas projects
Go
36
star
34

learning-http2

29
star
35

backbone-gitlab

Backbone wrapper for the Gitlab API
JavaScript
28
star
36

hadoop_the_definitive_guide_4e

This is the Case Study repository for Hadoop: The Definitive Guide, 4E by Tom White (O'Reilly Media)
27
star
37

orm_book_samples

Sample book files for O'Reilly content
HTML
27
star
38

programming_javascript_applications

27
star
39

SVG_Colors_Patterns_Gradients

Example code for the book SVG Colors, Patterns & Gradients
HTML
27
star
40

linux_pocket_guide

Shell
27
star
41

physics_for_game_developers_2e

26
star
42

beautiful_javascript

JavaScript
25
star
43

htmlbook.js

html -> htmlbook parser
JavaScript
25
star
44

enterprise_web_development

This is the example code repository for Enterprise Web Development by Yakov Fain, Victor Rasputnis, Anatole Tartakovsky, and Viktor Gamov (O'Reilly Media)
23
star
45

liber_amicorum

Creative Coding Guidebook
22
star
46

ethics-datascience

Repository for Ethics and Data Science, by Mike Loukides, DJ Patil, and Hilary Mason
20
star
47

lean_enterprise

This is the example code repository for Lean Enterprise by Jez Humble, Joanne Molesky, and Barry O'Reilly (O'Reilly Media)
18
star
48

Learning-Path-Get-Started-with-Natural-Language-Processing-Using-Python-Spark-and-Scala

Links to example code downloads for Learning Path: Get Started with Natural Language Processing Using Python, Spark, and Scala
17
star
49

docbook2htmlbook

XSL Transform to convert Docbook XML to HTMLBook
XSLT
16
star
50

Getting-Started-with-Atlas

A guide to using Atlas, O'Reilly's wiki-like, git-managed authoring platform.
JavaScript
16
star
51

atlas_tech1c_theme

A CSS stylesheet for technical books.
CSS
15
star
52

SVG_Text_Layout

Example files for the book SVG Text Layout
HTML
15
star
53

learning_r

This is the example code repository for Learning R by Richard Cotton (O'Reilly Media)
15
star
54

jsonform

JS library for building JSON objects through a dynamic form
JavaScript
15
star
55

atlas_book_skeleton

Skeleton files for a new Atlas project
HTML
14
star
56

production-resources

Help and Information about O'Reilly Production
14
star
57

knockout_js

This is the example code repository for Knockout.js by Jamie Munro (O'Reilly Media)
CSS
13
star
58

ifpress-solr-plugin

Plugins that extend Solr's capabilities
Java
13
star
59

programmers_guide_to_drupal

Example code repository for Programmer's Guide to Drupal (Second edition) by Jennifer Hodgdon (O'Reilly Media)
PHP
13
star
60

Data_Analytics_with_Hadoop

Python
12
star
61

cypress-playback

Automatically record and playback HTTP requests in Cypress.
JavaScript
12
star
62

jnb-data-sci-handbook

Jupyter Notebook
11
star
63

Learning-Path-Mastering-SpaCy-for-Natural-Language-Processing

11
star
64

orm-awesome

O'Reilly Awesome List
11
star
65

atlas_trade_theme

One of two default themes for O'Reilly Atlas
CSS
10
star
66

biobuilder

9
star
67

dart_up_and_running

This is the example code repository for Dart: Up and Running by Kathy Walrath and Seth Ladd (O'Reilly Media)
9
star
68

Security_for_Web_Developers

9
star
69

cloud-function-template

google cloud function testing template
JavaScript
9
star
70

mapping_the_user_experience

This is the example code repository for Mapping the User Experience by James Kalbach (O'Reilly Media)
8
star
71

atlas_assets

Public repository with assets and design guide for the Atlas platform
SCSS
8
star
72

distributed_denial_of_service_ddos

Python
8
star
73

Spark_The_Definitive_Guide

7
star
74

introduction-to-seaborn

HTML
7
star
75

building_web_applications_with_erlang

This is the example code repository for Building Web Applications with Erlang by Zachary Kessin (O'Reilly Media)
7
star
76

ipython-kernel

IPython kernel server for Pyxie projects
Python
6
star
77

learning_ratpack

6
star
78

audit-python-package

Checks for compliance with current Python packaging best practices
Python
6
star
79

cloud_native_java

6
star
80

an-illustrated-introduction-to-the-t-sne-algorithm

An Illustrated Introduction to the t-SNE Algorithm using Docker
CSS
6
star
81

native-mobile-development

This is the example code repository for Native Mobile Development by Mike Dunn and Shaun Lewis (O'Reilly Media)
Swift
5
star
82

go-tang

Cache Rules Everything Around Me
Go
5
star
83

etudes_for_clojurescript

HTML
5
star
84

Designing_Efficient_BPM_Applications

5
star
85

prototype-imageproxy

Config for deploying imageproxy
Go
5
star
86

gulp-htmlbook

Gulp plugins for handling htmlbook content
HTML
5
star
87

best-of-fluent-verou

Best of Fluent (2012): Lea Verou
5
star
88

earsketch-samples

CSS
5
star
89

hello-alexa

JavaScript
4
star
90

designing-data-intensive-apps

4
star
91

satturn

A file editor with support for markdown and json
CSS
4
star
92

learning_path_go_programming_basics

HTML
4
star
93

atlas-api

Gem to interact with the O'Reilly Atlas API
Ruby
4
star
94

spock_up_and_running

4
star
95

article-template

Single chapter structure for short form writing.
HTML
4
star
96

pyxie-static

Companion repo to jupyter-kernel to show how to insert an ipython notebook code cell into a static site
JavaScript
4
star
97

automating_actionscript_projects_with_eclipse_and_ant

This is the example code repository for Automating ActionScript Projects with Eclipse and Ant by Sidney de Koning (O'Reilly Media)
4
star
98

ncsa-logparse

NCSA Logfile Parser in Haskell
Haskell
4
star
99

binder-trees-forest

Jupyter Notebook
3
star
100

atlas-book-sample

Sample Book Repo for Atlas v2
CSS
3
star