• Stars
    star
    1,077
  • Rank 42,945 (Top 0.9 %)
  • Language
    C
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

RealSR super resolution implemented with ncnn library

RealSR ncnn Vulkan

CI download

ncnn implementation of Real-World Super-Resolution via Kernel Estimation and Noise Injection super resolution.

realsr-ncnn-vulkan uses ncnn project as the universal neural network inference framework.

Download

Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia GPU

https://github.com/nihui/realsr-ncnn-vulkan/releases

This package includes all the binaries and models required. It is portable, so no CUDA or Caffe runtime environment is needed :)

About RealSR

Real-World Super-Resolution via Kernel Estimation and Noise Injection (CVPRW 2020)

https://github.com/jixiaozhong/RealSR

Xiaozhong Ji, Yun Cao, Ying Tai, Chengjie Wang, Jilin Li, and Feiyue Huang

Tencent YouTu Lab

Our solution is the winner of CVPR NTIRE 2020 Challenge on Real-World Super-Resolution in both tracks.

https://arxiv.org/abs/2005.01996

Usages

Example Command

realsr-ncnn-vulkan.exe -i input.jpg -o output.png -s 4

Full Usages

Usage: realsr-ncnn-vulkan -i infile -o outfile [options]...

  -h                   show this help
  -v                   verbose output
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (jpg/png/webp) or directory
  -s scale             upscale ratio (4, default=4)
  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
  -m model-path        realsr model path (default=models-DF2K_JPEG)
  -g gpu-id            gpu device to use (-1=cpu, default=0) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -x                   enable tta mode
  -f format            output image format (jpg/png/webp, default=ext/png)
  • input-path and output-path accept either file path or directory path
  • scale = scale level, 4 = upscale 4x
  • tile-size = tile size, use smaller value to reduce GPU memory usage, default selects automatically
  • load:proc:save = thread count for the three stages (image decoding + realsr upscaling + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
  • format = the format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded

If you encounter crash or error, try to upgrade your GPU driver

Build from Source

  1. Download and setup the Vulkan SDK from https://vulkan.lunarg.com/
  • For Linux distributions, you can either get the essential build requirements from package manager
dnf install vulkan-headers vulkan-loader-devel
apt-get install libvulkan-dev
pacman -S vulkan-headers vulkan-icd-loader
  1. Clone this project with all submodules
git clone https://github.com/nihui/realsr-ncnn-vulkan.git
cd realsr-ncnn-vulkan
git submodule update --init --recursive
  1. Build with CMake
  • You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS
mkdir build
cd build
cmake ../src
cmake --build . -j 4

Sample Images

Original Image

origin

Upscale 4x with ImageMagick Lanczo4 Filter

convert origin.jpg -resize 400% output.png

browser

Upscale 4x with srmd scale=4 noise=-1

srmd-ncnn-vulkan.exe -i origin.jpg -o 4x.png -s 4 -n -1

waifu2x

Upscale 4x with realsr model=DF2K scale=4 tta=1

realsr-ncnn-vulkan.exe -i origin.jpg -o output.png -s 4 -x -m models-DF2K

realsr

Original RealSR Project

Other Open-Source Code Used

More Repositories

1

waifu2x-ncnn-vulkan

waifu2x converter ncnn version, runs fast on intel / amd / nvidia / apple-silicon GPU with vulkan
C
2,963
star
2

opencv-mobile

The minimal opencv for Android, iOS, ARM Linux, Windows, Linux, MacOS, WebAssembly
C++
2,325
star
3

rife-ncnn-vulkan

RIFE, Real-Time Intermediate Flow Estimation for Video Frame Interpolation implemented with ncnn library
C
775
star
4

realcugan-ncnn-vulkan

real-cugan converter ncnn version, runs fast on intel / amd / nvidia / apple-silicon GPU with vulkan
C
751
star
5

ncnn-android-yolov5

The YOLOv5 object detection android example
C++
621
star
6

dain-ncnn-vulkan

DAIN, Depth-Aware Video Frame Interpolation implemented with ncnn library
C
506
star
7

ncnn-android-nanodet

C++
355
star
8

srmd-ncnn-vulkan

SRMD super resolution implemented with ncnn library
C
324
star
9

ruapu

Detect CPU features with single-file
C
268
star
10

ncnn-android-scrfd

C++
208
star
11

ncnn-assets

Python
186
star
12

ncnn-small-board

ncnn benchmark on various single board computers
157
star
13

ncnn-android-squeezenet

The squeezenet image classification android example
C++
141
star
14

ncnn-webassembly-yolov5

Deploy YOLOv5 in your web browser with ncnn and webassembly
C++
138
star
15

cain-ncnn-vulkan

CAIN, Channel Attention Is All You Need for Video Frame Interpolation implemented with ncnn library
C
130
star
16

ncnn-webassembly-nanodet

Deploy nanodet, the super fast and lightweight object detection, in your web browser with ncnn and webassembly
C++
118
star
17

vkpeak

A tool which profiles Vulkan devices to find their peak capacities
C++
96
star
18

ifrnet-ncnn-vulkan

IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation implemented with ncnn library
C
92
star
19

ncnn-android-mobilenetssd

The mobilenetssd object detection android example
Java
89
star
20

ncnn-android-styletransfer

The style transfer android example
C
84
star
21

ncnn-android-benchmark

ncnn android benchmark app
C++
83
star
22

ncnn_on_esp32

C
65
star
23

stable-diffusion-ncnn-vulkan

60
star
24

nihui

57
star
25

valgrind-android

55
star
26

ncnn-webassembly-scrfd

Deploy SCRFD, an efficient high accuracy face detection approach, in your web browser with ncnn and webassembly
C++
52
star
27

ncnn-webassembly-portrait-segmentation

Portrait segmentation in your web browser with ncnn and webassembly
C++
33
star
28

riscv-v-toolchain

prebuild package for cross compiling riscv
18
star
29

ncnn-android-vkpeak

C++
17
star
30

styletransfer-ncnn-vulkan

C
17
star
31

ncnn_on_xr806

C++
14
star
32

ncnn-vulkan-compute-sample

CMake
13
star
33

fxxk-tensorflow-lite-note

add custom op in both tensorflow and tensorflow-lite
Jupyter Notebook
7
star
34

zzzz

C++
6
star
35

milkv-duo-test

C
5
star
36

kuaide

A fast desktop environment based on KDE technology
C++
5
star
37

InferXLite

C++
4
star
38

eva-qq-protocol

qq protocol document for eva
3
star
39

action-protobuf

CMake
3
star
40

libnofetion

next generation of ofetion library
C
3
star
41

oxygenspread

C
3
star
42

xf86-video-siska

xf86 Driver for SIS Chipset
C
3
star
43

playground

C++
2
star
44

ksaolaji

C++
2
star
45

VulkanOnMetal

Vulkan On Metal
C
2
star
46

kio-kuaipan

C++
2
star
47

kfuseiso

C++
1
star
48

eva-qt4

C++
1
star
49

action-xmwk

1
star
50

kopete-qq

C++
1
star
51

kiconedit

C++
1
star
52

kde-thumbnailer

C++
1
star
53

kcm-fontadjust

C++
1
star
54

choqok-sina

C++
1
star
55

qsopcast

C++
1
star
56

choqok-tencent

C++
1
star
57

nihui-patch

nihui's patch collection
1
star
58

dozen

1
star
59

estelle

C++
1
star
60

kamule

C++
1
star
61

kdoubanfm

C++
1
star
62

kopete-fetion

C++
1
star
63

vendor-rockchip-common

common
C
1
star
64

plasma-webqq

C++
1
star
65

choqok-netease

C++
1
star