• Stars
    star
    130
  • Rank 277,575 (Top 6 %)
  • Language
    C
  • License
    MIT License
  • Created about 4 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

CAIN, Channel Attention Is All You Need for Video Frame Interpolation implemented with ncnn library

CAIN ncnn Vulkan

CI download

ncnn implementation of CAIN, Channel Attention Is All You Need for Video Frame Interpolation.

cain-ncnn-vulkan uses ncnn project as the universal neural network inference framework.

Download

Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia GPU

https://github.com/nihui/cain-ncnn-vulkan/releases

This package includes all the binaries and models required. It is portable, so no CUDA or PyTorch runtime environment is needed :)

About CAIN

CAIN (Channel Attention Is All You Need for Video Frame Interpolation) (AAAI 2020)

https://github.com/myungsub/CAIN

Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, Kyoung Mu Lee

2nd place in [AIM 2019 ICCV Workshop] - Video Temporal Super-Resolution Challenge

Project | Paper-AAAI (Download the paper [here] in case the AAAI link is broken) | Poster

Usages

Input two frame images, output one interpolated frame image.

Example Command

./cain-ncnn-vulkan -0 0.jpg -1 1.jpg -o 01.jpg
./cain-ncnn-vulkan -i input_frames/ -o output_frames/

Video Interpolation with FFmpeg

mkdir input_frames
mkdir output_frames

# find the source fps and format with ffprobe, for example 24fps, AAC
ffprobe input.mp4

# extract audio
ffmpeg -i input.mp4 -vn -acodec copy audio.m4a

# decode all frames
ffmpeg -i input.mp4 input_frames/frame_%06d.png

# interpolate 2x frame count
./cain-ncnn-vulkan -i input_frames -o output_frames

# encode interpolated frames in 48fps with audio
ffmpeg -framerate 48 -i output_frames/%06d.png -i audio.m4a -c:a copy -crf 20 -c:v libx264 -pix_fmt yuv420p output.mp4

Full Usages

Usage: cain-ncnn-vulkan -0 infile -1 infile1 -o outfile [options]...
       cain-ncnn-vulkan -i indir -o outdir [options]...

  -h                   show this help
  -v                   verbose output
  -0 input0-path       input image0 path (jpg/png/webp)
  -1 input1-path       input image1 path (jpg/png/webp)
  -i input-path        input image directory (jpg/png/webp)
  -o output-path       output image path (jpg/png/webp) or directory
  -m model-path        cain model path (default=cain)
  -g gpu-id            gpu device to use (default=auto) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -f pattern-format    output image filename pattern format (%08d.jpg/png/webp, default=ext/%08d.png)
  • input0-path, input1-path and output-path accept file path
  • input-path and output-path accept file directory
  • load:proc:save = thread count for the three stages (image decoding + cain interpolation + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
  • pattern-format = the filename pattern and format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded

If you encounter a crash or error, try upgrading your GPU driver:

Build from Source

  1. Download and setup the Vulkan SDK from https://vulkan.lunarg.com/
  • For Linux distributions, you can either get the essential build requirements from package manager
dnf install vulkan-headers vulkan-loader-devel
apt-get install libvulkan-dev
pacman -S vulkan-headers vulkan-icd-loader
  1. Clone this project with all submodules
git clone https://github.com/nihui/cain-ncnn-vulkan.git
cd cain-ncnn-vulkan
git submodule update --init --recursive
  1. Build with CMake
  • You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS
mkdir build
cd build
cmake ../src
cmake --build . -j 4

TODO

  • test-time sptial augmentation aka TTA-s
  • test-time temporal augmentation aka TTA-t

Sample Images

Original Image

origin0 origin1

Interpolate with cain

cain-ncnn-vulkan.exe -0 0.png -1 1.png -o out.png

cain

Original CAIN Project

Other Open-Source Code Used

More Repositories

1

waifu2x-ncnn-vulkan

waifu2x converter ncnn version, runs fast on intel / amd / nvidia / apple-silicon GPU with vulkan
C
2,963
star
2

opencv-mobile

The minimal opencv for Android, iOS, ARM Linux, Windows, Linux, MacOS, WebAssembly
C++
2,325
star
3

realsr-ncnn-vulkan

RealSR super resolution implemented with ncnn library
C
1,077
star
4

rife-ncnn-vulkan

RIFE, Real-Time Intermediate Flow Estimation for Video Frame Interpolation implemented with ncnn library
C
775
star
5

realcugan-ncnn-vulkan

real-cugan converter ncnn version, runs fast on intel / amd / nvidia / apple-silicon GPU with vulkan
C
751
star
6

ncnn-android-yolov5

The YOLOv5 object detection android example
C++
621
star
7

dain-ncnn-vulkan

DAIN, Depth-Aware Video Frame Interpolation implemented with ncnn library
C
506
star
8

ncnn-android-nanodet

C++
355
star
9

srmd-ncnn-vulkan

SRMD super resolution implemented with ncnn library
C
324
star
10

ruapu

Detect CPU features with single-file
C
268
star
11

ncnn-android-scrfd

C++
208
star
12

ncnn-assets

Python
186
star
13

ncnn-small-board

ncnn benchmark on various single board computers
157
star
14

ncnn-android-squeezenet

The squeezenet image classification android example
C++
141
star
15

ncnn-webassembly-yolov5

Deploy YOLOv5 in your web browser with ncnn and webassembly
C++
138
star
16

ncnn-webassembly-nanodet

Deploy nanodet, the super fast and lightweight object detection, in your web browser with ncnn and webassembly
C++
118
star
17

vkpeak

A tool which profiles Vulkan devices to find their peak capacities
C++
96
star
18

ifrnet-ncnn-vulkan

IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation implemented with ncnn library
C
92
star
19

ncnn-android-mobilenetssd

The mobilenetssd object detection android example
Java
89
star
20

ncnn-android-styletransfer

The style transfer android example
C
84
star
21

ncnn-android-benchmark

ncnn android benchmark app
C++
83
star
22

ncnn_on_esp32

C
65
star
23

stable-diffusion-ncnn-vulkan

60
star
24

nihui

57
star
25

valgrind-android

55
star
26

ncnn-webassembly-scrfd

Deploy SCRFD, an efficient high accuracy face detection approach, in your web browser with ncnn and webassembly
C++
52
star
27

ncnn-webassembly-portrait-segmentation

Portrait segmentation in your web browser with ncnn and webassembly
C++
33
star
28

riscv-v-toolchain

prebuild package for cross compiling riscv
18
star
29

ncnn-android-vkpeak

C++
17
star
30

styletransfer-ncnn-vulkan

C
17
star
31

ncnn_on_xr806

C++
14
star
32

ncnn-vulkan-compute-sample

CMake
13
star
33

fxxk-tensorflow-lite-note

add custom op in both tensorflow and tensorflow-lite
Jupyter Notebook
7
star
34

zzzz

C++
6
star
35

milkv-duo-test

C
5
star
36

kuaide

A fast desktop environment based on KDE technology
C++
5
star
37

InferXLite

C++
4
star
38

eva-qq-protocol

qq protocol document for eva
3
star
39

action-protobuf

CMake
3
star
40

libnofetion

next generation of ofetion library
C
3
star
41

oxygenspread

C
3
star
42

xf86-video-siska

xf86 Driver for SIS Chipset
C
3
star
43

playground

C++
2
star
44

ksaolaji

C++
2
star
45

VulkanOnMetal

Vulkan On Metal
C
2
star
46

kio-kuaipan

C++
2
star
47

kfuseiso

C++
1
star
48

eva-qt4

C++
1
star
49

action-xmwk

1
star
50

kopete-qq

C++
1
star
51

kiconedit

C++
1
star
52

kde-thumbnailer

C++
1
star
53

kcm-fontadjust

C++
1
star
54

choqok-sina

C++
1
star
55

qsopcast

C++
1
star
56

choqok-tencent

C++
1
star
57

nihui-patch

nihui's patch collection
1
star
58

dozen

1
star
59

estelle

C++
1
star
60

kamule

C++
1
star
61

kdoubanfm

C++
1
star
62

kopete-fetion

C++
1
star
63

vendor-rockchip-common

common
C
1
star
64

plasma-webqq

C++
1
star
65

choqok-netease

C++
1
star